Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278862

RESUMO

A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/genética , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Treonina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética , Proliferação de Células/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
EMBO Rep ; 24(9): e54709, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37458257

RESUMO

Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signaling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live-cell imaging revealed that TPC-dependent regulation of CLAVATA3-dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC-mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3-mediated signaling during plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endocitose , Regulação da Expressão Gênica de Plantas , Meristema/genética , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
3.
J Exp Bot ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361138

RESUMO

The ALOG/LSH group of proteins is highly conserved across plant lineage, starting from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and their role as transcription factors. It also aims to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.

4.
Plant J ; 98(3): 465-478, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30657229

RESUMO

Inflorescence architecture is diverse in angiosperms, and is mainly determined by the arrangement of the branches and flowers, known as phyllotaxy. In rice (Oryza sativa), the main inflorescence axis, called the rachis, generates primary branches in a spiral phyllotaxy, and flowers (spikelets) are formed on these branches. Here, we have studied a classical mutant, named verticillate rachis (ri), which produces branches in a partially whorled phyllotaxy. Gene isolation revealed that RI encodes a BELL1-type homeodomain transcription factor, similar to Arabidopsis PENNYWISE/BELLRINGER/REPLUMLESS, and is expressed in the specific regions within the inflorescence and branch meristems where their descendant meristems would soon initiate. Genetic combination of an ri homozygote and a mutant allele of RI-LIKE1 (RIL1) (designated ri ril1/+ plant), a close paralog of RI, enhanced the ri inflorescence phenotype, including the abnormalities in branch phyllotaxy and rachis internode patterning. During early inflorescence development, the timing and arrangement of primary branch meristem (pBM) initiation were disturbed in both ri and ri ril1/+ plants. These findings suggest that RI and RIL1 were involved in regulating the phyllotactic pattern of the pBMs to form normal inflorescences. In addition, both RI and RIL1 seem to be involved in meristem maintenance, because the ri ril1 double-mutant failed to establish or maintain the shoot apical meristem during embryogenesis.


Assuntos
Inflorescência/embriologia , Inflorescência/metabolismo , Meristema/embriologia , Meristema/metabolismo , Oryza/embriologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética
5.
Proc Natl Acad Sci U S A ; 113(33): 9375-80, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27469166

RESUMO

Plant meristems are responsible for the generation of all plant tissues and organs. Here we show that the transcription factor (TF) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) plays an important role in both floral meristem (FM) determinacy and shoot apical meristem maintenance in Arabidopsis, in addition to its well-known multifaceted roles in plant growth and development during the vegetative stage. Through genetic analyses, we show that WUSCHEL (WUS) and CLAVATA3 (CLV3), two central players in the establishment and maintenance of meristems, are epistatic to FHY3 Using genome-wide ChIP-seq and RNA-seq data, we identify hundreds of FHY3 target genes in flowers and find that FHY3 mainly acts as a transcriptional repressor in flower development, in contrast to its transcriptional activator role in seedlings. Binding motif-enrichment analyses indicate that FHY3 may coregulate flower development with three flower-specific MADS-domain TFs and four basic helix-loop-helix TFs that are involved in photomorphogenesis. We further demonstrate that CLV3, SEPALLATA1 (SEP1), and SEP2 are FHY3 target genes. In shoot apical meristem, FHY3 directly represses CLV3, which consequently regulates WUS to maintain the stem cell pool. Intriguingly, CLV3 expression did not change significantly in fhy3 and phytochrome B mutants before and after light treatment, indicating that FHY3 and phytochrome B are involved in light-regulated meristem activity. In FM, FHY3 directly represses CLV3, but activates SEP2, to ultimately promote FM determinacy. Taken together, our results reveal insights into the mechanisms of meristem maintenance and determinacy, and illustrate how the roles of a single TF may vary in different organs and developmental stages.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Fitocromo/fisiologia , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia
6.
New Phytol ; 215(2): 825-839, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556940

RESUMO

YABBY genes play important roles in the development of lateral organs such as leaves and floral organs in Angiosperms. However, the function of YABBY genes is poorly understood in monocots. We focused on three rice (Oryza sativa) YABBY genes, TONGARI-BOUSHI (TOB1, TOB2, TOB3), which are closely related to Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL). To elucidate the function of these YABBY genes, we employed a reverse genetic approach. TOB genes were expressed in bract and lateral organ primordia, but not in meristems. RNAi knockdown of TOB2 or TOB3 in the tob1 mutant caused abnormal spikelet development. Furthermore, simultaneous knockdown of both TOB2 and TOB3 in tob1 affected not only spikelet, but also inflorescence development. In severe cases, the inflorescences comprised naked branches without spikelets. Analysis of inflorescence development at an early stage showed that the observed phenotypic defects were closely associated with a failure to initiate and maintain reproductive meristems. These results indicate that the TOB genes regulate the maintenance and fate of all reproductive meristems. It is likely that the function of FIL/TOB clade YABBY genes has been conserved between Arabidopsis and rice to maintain the proper function of meristems, even though these genes are expressed in lateral organ primordia.


Assuntos
Meristema/fisiologia , Oryza/fisiologia , Proteínas de Plantas/genética , Topos Floridos/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Inflorescência/fisiologia , Meristema/genética , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
7.
Dev Cell ; 58(18): 1657-1669.e5, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37480843

RESUMO

Salt stress is one of the unfavorable environmental factors to affect plants. Salinity represses root growth, resulting in reduced biomass of agricultural plants. Little is known about how plants maintain root growth to counteract salt stress. The AP2-domain transcription factors PLETHORA1/2 (PLT1/2) act as master regulators in root meristem maintenance in Arabidopsis. In this study, we report that the salt overly sensitive (SOS) pathway component SOS2 regulates PLT1/2 at the post-transcriptional level. Salt-activated SOS2 interacts and phosphorylates PLT1/2 through their conserved C-terminal motifs to stabilize PLT1/2, critical for root apical meristem maintenance under salt stress. The phospho-mimetic version of PLT1/2 restored meristem and primary root length reduction of sos2-2 and plt1-4 plt2-2 mutants on salt treatment. Moreover, SOS2-mediated PLT1/2 phosphorylation improves root growth recovery after salt stress alleviation. We identify a SOS2-PLT1/2 core protein module that is required for protecting primary root growth and meristem maintenance from salt stress.


Assuntos
Arabidopsis , Meristema , Transdução de Sinais , Arabidopsis/genética , Fosforilação , Estresse Salino
8.
Symbiosis ; 58(1-3): 63-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23482442

RESUMO

In this review, the anatomy of indeterminate legume root nodule is briefly summarized. Next, the indeterminate nodule meristem activity, organization and cell ultrastructure are described in species with a distinct nodule meristem zonation. Finally, the putative primary endogenous factors controlling nodule meristem maintenance are discussed in the context of the well-studied root apical meristem (RAM) of Arabidopsis thaliana.

9.
Curr Biol ; 31(20): 4462-4472.e6, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34418341

RESUMO

Root meristem organization is maintained by an interplay between hormone signaling pathways that both interpret and determine their accumulation and distribution. The interacting hormones Brassinosteroids (BR) and auxin control the number of meristematic cells in the Arabidopsis root. BR was reported both to promote auxin signaling input and to repress auxin signaling output. Whether these contradicting molecular outcomes co-occur and what their significance in meristem function is remain unclear. Here, we established a dual effect of BR on auxin, with BR simultaneously promoting auxin biosynthesis and repressing auxin transcriptional output, which is essential for meristem maintenance. Blocking BR-induced auxin synthesis resulted in rapid BR-mediated meristem loss. Conversely, plants with reduced BR levels were resistant to a critical loss of auxin biosynthesis, maintaining their meristem morphology. In agreement, injured root meristems, which rely solely on local auxin synthesis, regenerated when both auxin and BR synthesis were inhibited. Use of BIN2 as a tool to selectively inhibit BR signaling yielded meristems with distinct phenotypes depending on the perturbed tissue: meristem reminiscent either of BR-deficient mutants or of high BR exposure. This enabled mapping of the BR-auxin interaction that maintains the meristem to the outer epidermis and lateral root cap tissues and demonstrated the essentiality of BR signaling in these tissues for meristem response to BR. BR activity in internal tissues however, proved necessary to control BR levels. Together, we demonstrate a basis for inter-tissue coordination and how a critical ratio between these hormones determines the meristematic state.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo
10.
Front Plant Sci ; 12: 636749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659018

RESUMO

The CLAVATA pathway controls meristem size during inflorescence development in both eudicots and grasses, and is initiated by peptide ligands encoded by CLV3/ESR-related (CLE) genes. While CLV3 controls all shoot meristems in Arabidopsis, evidence from cereal grasses indicates that different meristem types are regulated by different CLE peptides. The rice peptide FON2 primarily controls the size of the floral meristem, whereas the orthologous peptides CLE7 and CLE14 in maize have their most dramatic effects on inflorescence and branch meristems, hinting at diversification among CLE responses in the grasses. Setaria viridis is more closely related to maize than to rice, so can be used to test whether the maize CLE network can be generalized to all members of subfamily Panicoideae. We used CRISPR-Cas9 in S. viridis to knock out the SvFON2 gene, the closest homolog to CLV3 and FON2. Svfon2 mutants developed larger inflorescence meristems, as in maize, but had normal floral meristems, unlike Osfon2, suggesting a panicoid-specific CLE network. Vegetative traits such as plant height, tiller number and leaf number were not significantly different between mutant and wild type plants, but time to heading was shorter in the mutants. In situ hybridization showed strong expression of Svfon2 in the inflorescence and branch meristems, consistent with the mutant phenotype. Using bioinformatic analysis, we predicted the co-expression network of SvFON2 and its signaling components, which included genes known to control inflorescence architecture in maize as well as genes of unknown function. The similarity between SvFON2 function in Setaria and maize suggests that its developmental specialization in inflorescence meristem control may be shared among panicoid grasses.

11.
Plant Physiol Biochem ; 157: 256-263, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152644

RESUMO

TOPLESS (TPL)/TOPLESS-related (TPR) corepressors are important regulators of plant growth and development, but their functions in chrysanthemum (Chrysanthemum morifolium) are currently unclear. In this study, a chrysanthemum TPL/TPR family gene, designated CmTPL1-1, was characterized. This gene encodes an 1135-amino-acid polypeptide harboring a conserved N-terminal domain and two C-terminal WD40 domains. CmTPL1-1 showed no transcriptional activity in yeast, and a localization experiment indicated that it localized to the nuclei in onion epidermal cells. Transcript profiling established that the gene was most highly expressed in the stem apex. The heterologous expression of CmTPL1-1 in Arabidopsis thaliana produced a pleiotropic phenotype, including smaller leaves, shorter siliques, increased meristem number, asymmetrical petal distribution and reduced stamen number. In transgenic plants, four AtARFs were downregulated, while six AtIAAs and two AtGH3s were upregulated at the transcript level; moreover, the expression of three key class I KNOTTED-like homeobox (KNOX) genes was upregulated. In addition, by yeast two-hybrid screening of a chrysanthemum cDNA library, we found that CmTPL1-1 could interact with CmWOX4, CmLBD38 and CmLBD36, and these interactions were confirmed by bimolecular fluorescence complementation (BiFC) assays. Overall, we speculated that heterologous expression of CmTPL1-1 regulates plant growth and development by interacting with auxin signaling in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Chrysanthemum/genética , Proteínas Correpressoras/fisiologia , Meristema/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
12.
Plant Sci ; 301: 110691, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218649

RESUMO

KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors with important roles in plant development that have been classified into two subfamilies with differential expression domains and functions. Studies in angiosperms have shown that class I members are related to the maintenance of meristem homeostasis and leaf development, whereas class II members promote differentiation of tissues and organs. However, little is known about its diversification and function in gymnosperms. By combining PCR-based detection and transcriptome data analysis, we identified four class I and two class II KNOX genes in Pinus pinaster. Expression analyses showed that class I members were mainly expressed in meristematic regions and differentiating tissues, with practically no expression in lateral organs, whereas expression of class II members was restricted to lateral organs. Furthermore, overexpression of P. pinaster KNOX genes in Arabidopsis thaliana caused similar phenotypic effects to those described for their angiosperms counterparts. This is the first time to our knowledge that functional analyses of class II members are reported in a conifer species. These results suggest a high conservation of the KNOX gene family throughout seed plants, as the functional differentiation of both subfamilies observed in angiosperms might be partially conserved in gymnosperms.


Assuntos
Pinus/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Meristema/genética , Especificidade de Órgãos , Fenótipo , Fatores de Transcrição/genética
13.
Trends Plant Sci ; 19(3): 146-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24280109

RESUMO

Members of the AINTEGUMENTA-LIKE (AIL) family of APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain transcription factors are expressed in all dividing tissues in the plant, where they have central roles in developmental processes such as embryogenesis, stem cell niche specification, meristem maintenance, organ positioning, and growth. When overexpressed, AIL proteins induce adventitious growth, including somatic embryogenesis and ectopic organ formation. The Arabidopsis (Arabidopsis thaliana) genome contains eight AIL genes, including AINTEGUMENTA, BABY BOOM, and the PLETHORA genes. Studies on these transcription factors have revealed their intricate relationship with auxin as well as their involvement in an increasing number of gene regulatory networks, in which extensive crosstalk and feedback loops have a major role.


Assuntos
Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA