Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730853

RESUMO

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , Reprodução
2.
BMC Bioinformatics ; 25(1): 297, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256657

RESUMO

BACKGROUND: Chemical bioproduction has attracted attention as a key technology in a decarbonized society. In computational design for chemical bioproduction, it is necessary to predict changes in metabolic fluxes when up-/down-regulating enzymatic reactions, that is, responses of the system to enzyme perturbations. Structural sensitivity analysis (SSA) was previously developed as a method to predict qualitative responses to enzyme perturbations on the basis of the structural information of the reaction network. However, the network structural information can sometimes be insufficient to predict qualitative responses unambiguously, which is a practical issue in bioproduction applications. To address this, in this study, we propose BayesianSSA, a Bayesian statistical model based on SSA. BayesianSSA extracts environmental information from perturbation datasets collected in environments of interest and integrates it into SSA predictions. RESULTS: We applied BayesianSSA to synthetic and real datasets of the central metabolic pathway of Escherichia coli. Our result demonstrates that BayesianSSA can successfully integrate environmental information extracted from perturbation data into SSA predictions. In addition, the posterior distribution estimated by BayesianSSA can be associated with the known pathway reported to enhance succinate export flux in previous studies. CONCLUSIONS: We believe that BayesianSSA will accelerate the chemical bioproduction process and contribute to advancements in the field.


Assuntos
Teorema de Bayes , Escherichia coli , Redes e Vias Metabólicas , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Estatísticos , Biologia Computacional/métodos , Enzimas/metabolismo
3.
Plant J ; 114(5): 1178-1201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891828

RESUMO

From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.


Assuntos
Alquil e Aril Transferases , Diterpenos , Sesquiterpenos , Filogenia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Proteínas de Plantas/metabolismo
4.
BMC Genomics ; 25(1): 70, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233814

RESUMO

BACKGROUND: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.


Assuntos
Melhoramento Vegetal , Transcriptoma , Ovinos/genética , Animais , Metaboloma , Glicina , Serina , Treonina , Colesterol
5.
BMC Genomics ; 25(1): 63, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229031

RESUMO

BACKGROUND: Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS: In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS: iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.


Assuntos
Pseudomonas putida , Solventes/metabolismo , Pseudomonas putida/genética , Genoma Bacteriano , Genômica/métodos , Redes e Vias Metabólicas/genética
6.
Ecol Lett ; 27(1): e14356, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193391

RESUMO

The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels ('positive BEF') is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer-resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.


Assuntos
Amônia , Ecossistema , Biodiversidade , Bactérias
7.
Eur J Neurosci ; 60(5): 4922-4936, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072881

RESUMO

Both clinical diagnosis and neuropathological diagnosis are commonly used in literature to categorize individuals as Alzheimer's disease (AD) or non-AD in omics analyses. Whether these diagnostic strategies result in distinct profiles of molecular abnormalities is poorly understood. Here, we analysed one of the most commonly used AD omics datasets in the literature from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort and compared the two diagnosis strategies using brain transcriptome and metabolome by grouping individuals as non-AD and AD according to clinical or neuropathological diagnosis separately. Differentially expressed genes, associated pathways related with AD hallmarks and AD-related genes showed that the categorization based on neuropathological diagnosis more accurately reflects the disease state at the molecular level than the categorization based on clinical diagnosis. We further identified consensus biomarker candidates between the two diagnosis strategies such as 5-hydroxylysine, sphingomyelin and 1-myristoyl-2-palmitoyl-GPC as metabolite biomarkers and sphingolipid metabolism as a pathway biomarker, which could be robust AD biomarkers since they are independent of diagnosis strategies. We also used consensus AD and consensus non-AD individuals between the two diagnostic strategies to train a machine-learning based model, which we used to classify the individuals who were cognitively normal but diagnosed as AD based on neuropathological diagnosis (asymptomatic AD individuals). The majority of these individuals were classified as consensus AD patients for both omics data types. Our study provides a detailed characterization of both diagnostic strategies in terms of the association of the corresponding multi-omics profiles with AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Biomarcadores/metabolismo , Masculino , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Idoso , Feminino , Idoso de 80 Anos ou mais , Metaboloma , Aprendizado de Máquina , Multiômica
8.
Hum Brain Mapp ; 45(14): e70026, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39300894

RESUMO

Metabolic network analysis in Parkinson's disease (PD) based on 18F-FDG PET has revealed PD-related metabolic patterns. However, alterations at the systemic metabolic network level and at the connection level between different brain regions still remain unknown. This study aimed to explore metabolic network alterations at multiple network levels among PD patients using an individual-specific metabolic network (ISMN) approach. 18F-FDG-PET images of patients with PD (n = 34) and healthy subjects (n = 47) were collected. Healthy subjects were further separated into reference group (n = 28) and control group (n = 19) randomly. Standardized uptake value normalized by lean body mass ratio (SULr) maps was calculated from the PET images. ISMNs were constructed based on SULr maps for PD patients and controls with reference to the reference group. Comparisons of nodal and edge features were performed between PD and control groups. Correlation analysis was conducted between multilevel network properties and clinical scales in PD group. A linear classifier was trained based on nodal or edge features to distinguish PD from controls. The distance from each patient's ISMN to the group-level difference network showed a negative correlation with Hoehn and Yahr stage (r = -0.390, p = .023). Eight nodes from ISMN were identified which exhibited significantly increased nodal degree in PD patients compared to controls (p < .05). Eleven edges were observed which demonstrated significant distinctions in Z-score values in comparisons to the control group (p < .05). Furthermore, the nodal and edge features showed comparable performances in PD diagnosis compared to the traditional SULr values, with area under the receiver operating characteristic curve larger than 0.91. The proposed ISMN approach revealed systemic metabolic deviations, as well as nodal and edge distinctions in PD, which might be supplementary to the existing findings on PD-related metabolic patterns.


Assuntos
Fluordesoxiglucose F18 , Redes e Vias Metabólicas , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Masculino , Feminino , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Idoso , Compostos Radiofarmacêuticos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
9.
Metab Eng ; 83: 172-182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648878

RESUMO

Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L-1 in 96 h in the fermenter-level fed-batch mode. This indicated that the integration of optimization algorithm and synthetic biology approaches was efficiently rational for PNP-producing strain design.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simulação por Computador , Técnicas de Silenciamento de Genes , Terpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Syst Biol ; 19(5): e11443, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36942755

RESUMO

Metabolism is controlled to ensure organismal development and homeostasis. Several mechanisms regulate metabolism, including allosteric control and transcriptional regulation of metabolic enzymes and transporters. So far, metabolism regulation has mostly been described for individual genes and pathways, and the extent of transcriptional regulation of the entire metabolic network remains largely unknown. Here, we find that three-quarters of all metabolic genes are transcriptionally regulated in the nematode Caenorhabditis elegans. We find that many annotated metabolic pathways are coexpressed, and we use gene expression data and the iCEL1314 metabolic network model to define coregulated subpathways in an unbiased manner. Using a large gene expression compendium, we determine the conditions where subpathways exhibit strong coexpression. Finally, we develop "WormClust," a web application that enables a gene-by-gene query of genes to view their association with metabolic (sub)-pathways. Overall, this study sheds light on the ubiquity of transcriptional regulation of metabolism and provides a blueprint for similar studies in other organisms, including humans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Software
11.
Plant Cell Environ ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292176

RESUMO

Isoflavones, secondary metabolites with numerous health benefits, are predominantly found in legume seeds, especially soybean; however, their contents in domesticated soybean seeds are highly variable. Wild soybeans are known for higher seed isoflavone contents than cultivars. Here we used experimental and modelling approaches on wild soybean (W05) and cultivated soybean (C08) to delineate factors influencing isoflavone accumulation. We found imported nutrients were converted into storage compounds, with isoflavone accumulation in W05 seeds being faster than in C08 ones. The isoflavone accumulation during seed development was simulated using context-specific cotyledon metabolic models of four developmental stages on cultivar C08, and the metabolic burden imposed by increasing biomass was evaluated. Trade-off analyses between biomass and isoflavone suggest that high biomass requirement in cultivars could limit the reallocation of resources for secondary metabolite production. Isoflavone production in mature seeds was also influenced by biomass compositions. Seeds with higher carbohydrate contents favour isoflavone production, while those with highest protein and oil contents had lowest isoflavone contents. Although seeds could synthesize isoflavones on their own, the predicted fluxes from biosynthesis alone were lower than the empirical levels. Shadow price analyses indicated that isoflavone accumulation depended on both intrinsic biosynthesis and direct contribution from the plant.

12.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978031

RESUMO

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Assuntos
Doenças das Artérias Carótidas , Ácido Glutâmico , Glutamina , Macrófagos , Redes e Vias Metabólicas , Fenótipo , Placa Aterosclerótica , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Ruptura Espontânea , Artérias Carótidas/patologia , Artérias Carótidas/metabolismo , Metabolômica , Bases de Dados Genéticas , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Metabolismo Energético , Conjuntos de Dados como Assunto , Masculino
13.
Adv Appl Microbiol ; 126: 1-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637105

RESUMO

The genome-scale metabolic network model is an effective tool for characterizing the gene-protein-response relationship in the entire metabolic pathway of an organism. By combining various algorithms, the genome-scale metabolic network model can effectively simulate the influence of a specific environment on the physiological state of cells, optimize the culture conditions of strains, and predict the targets of genetic modification to achieve targeted modification of strains. In this review, we summarize the whole process of model building, sort out the various tools that may be involved in the model building process, and explain the role of various algorithms in model analysis. In addition, we also summarized the application of GSMM in network characteristics, cell phenotypes, metabolic engineering, etc. Finally, we discuss the current challenges facing GSMM.


Assuntos
Genoma , Redes e Vias Metabólicas , Redes e Vias Metabólicas/genética , Engenharia Metabólica , Modelos Biológicos
14.
Environ Sci Technol ; 58(14): 6284-6295, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38488464

RESUMO

The anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.


Assuntos
Oxidação Anaeróbia da Amônia , Esgotos , Esgotos/microbiologia , Biomassa , Reatores Biológicos/microbiologia , Metaboloma , Nitrogênio/metabolismo , Oxirredução
15.
Food Microbiol ; 122: 104569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839228

RESUMO

Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.


Assuntos
Bactérias , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Metagenômica , Oryza , Compostos Orgânicos Voláteis , Vinho , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Aminas Biogênicas/análise , Aminas Biogênicas/metabolismo , China , Aromatizantes/metabolismo , Aromatizantes/química , Metabolômica/métodos , Microbiota , Odorantes/análise , Oryza/microbiologia , Oryza/química , Oryza/metabolismo , Microextração em Fase Sólida , Paladar , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise , Vinho/microbiologia
16.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640799

RESUMO

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Assuntos
Cobre , Daphnia magna , Dibutilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Daphnia magna/efeitos dos fármacos , Dibutilftalato/toxicidade , Ésteres/toxicidade , Glutationa Transferase/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica , Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
17.
Bioprocess Biosyst Eng ; 47(4): 463-474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492006

RESUMO

Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor performance. The model was run by the use of a genome-scale metabolic network of Methylocystis hirsuta in a dynamic flux balance analysis framework. The reactor has been modeled for two separate feeding scenarios: a pure methane feed and a biogas feed. The mass transfer coefficient parameter was predicted as a function of superficial gas velocities by the regression of data from published experiments. The results show an increase of removal efficiency by 38% and biomass concentration by 2.8 g/L with the increase of gas recycle ratio from 0 to 30 at the empty bed residence time of 60  min .


Assuntos
Reatores Biológicos , Metano , Metano/metabolismo , Poli-Hidroxibutiratos , Simulação por Computador , Redes e Vias Metabólicas
18.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791446

RESUMO

Patient blood samples are invaluable in clinical omics databases, yet current methodologies often fail to fully uncover the molecular mechanisms driving patient pathology. While genome-scale metabolic models (GEMs) show promise in systems medicine by integrating various omics data, having only exometabolomic data remains a limiting factor. To address this gap, we introduce a comprehensive pipeline integrating GEMs with patient plasma metabolome. This pipeline constructs case-specific GEMs using literature-based and patient-specific metabolomic data. Novel computational methods, including adaptive sampling and an in-house developed algorithm for the rational exploration of the sampled space of solutions, enhance integration accuracy while improving computational performance. Model characterization involves task analysis in combination with clustering methods to identify critical cellular functions. The new pipeline was applied to a cohort of trauma patients to investigate shock-induced endotheliopathy using patient plasma metabolome data. By analyzing endothelial cell metabolism comprehensively, the pipeline identified critical therapeutic targets and biomarkers that can potentially contribute to the development of therapeutic strategies. Our study demonstrates the efficacy of integrating patient plasma metabolome data into computational models to analyze endothelial cell metabolism in disease contexts. This approach offers a deeper understanding of metabolic dysregulations and provides insights into diseases with metabolic components and potential treatments.


Assuntos
Células Endoteliais , Metaboloma , Metabolômica , Humanos , Células Endoteliais/metabolismo , Metabolômica/métodos , Modelos Biológicos , Algoritmos , Biomarcadores/sangue , Biologia Computacional/métodos
19.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814322

RESUMO

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Assuntos
Redes e Vias Metabólicas , Streptococcus thermophilus , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentação , Leite/química , Ureia/metabolismo , Trifosfato de Adenosina/análise
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 708-714, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39218596

RESUMO

The establishment of brain metabolic network is based on 18fluoro-deoxyglucose positron emission computed tomography ( 18F-FDG PET) analysis, which reflect the brain functional network connectivity in normal physiological state or disease state. It is now applied to basic and clinical brain functional network research. In this paper, we constructed a metabolic network for the cerebral cortex firstly according to 18F-FDG PET image data from patients with temporal lobe epilepsy (TLE).Then, a statistical analysis to the network properties of patients with left or right TLE and controls was performed. It is shown that the connectivity of the brain metabolic network is weakened in patients with TLE, the topology of the network is changed and the transmission efficiency of the network is reduced, which means the brain metabolic network connectivity is extensively impaired in patients with TLE. It is confirmed that the brain metabolic network analysis based on 18F-FDG PET can provide a new perspective for the diagnose and therapy of epilepsy by utilizing PET images.


Assuntos
Encéfalo , Epilepsia do Lobo Temporal , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Redes e Vias Metabólicas , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA