Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
FASEB J ; 38(11): e23709, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38809700

RESUMO

Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of ß-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-ß1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.


Assuntos
Tecido Adiposo Marrom , Fibrose , Proteína Desacopladora 1 , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos , Masculino , Proteína Desacopladora 1/metabolismo , Fibrose/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Fisiológico , Remodelação Ventricular/fisiologia , Camundongos Knockout , Temperatura Baixa
3.
J Lipid Res ; 65(2): 100494, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160756

RESUMO

HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Hipertrigliceridemia , Quinolinas , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Proteoma , Diglicerídeos , Lipidômica , Ceramidas , Colesterol/metabolismo , Hipertrigliceridemia/tratamento farmacológico , HDL-Colesterol , Triglicerídeos , Fosfatidilcolinas
4.
J Biol Chem ; 299(2): 102837, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581206

RESUMO

A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.


Assuntos
Mitocôndrias , Pressão Osmótica , Oxirredutases , Piruvatos , Humanos , Células HeLa , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Fosforilação , Piruvatos/metabolismo , Células RAW 264.7 , Animais , Camundongos
5.
J Cell Physiol ; 239(8): e31290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686599

RESUMO

Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.


Assuntos
Ácido Láctico , Músculo Esquelético , Fatores de Transcrição NFATC , Transdução de Sinais , Fatores de Transcrição NFATC/metabolismo , Animais , Ácido Láctico/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Cálcio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34426499

RESUMO

Mycobacterium tuberculosis (Mtb) infection is difficult to treat because Mtb spends the majority of its life cycle in a nonreplicating (NR) state. Since NR Mtb is highly tolerant to antibiotic effects and can mutate to become drug resistant (DR), our conventional tuberculosis (TB) treatment is not effective. Thus, a novel strategy to kill NR Mtb is required. Accumulating evidence has shown that repetitive exposure to sublethal doses of antibiotics enhances the level of drug tolerance, implying that NR Mtb is formed by adaptive metabolic remodeling. As such, metabolic modulation strategies to block the metabolic remodeling needed to form NR Mtb have emerged as new therapeutic options. Here, we modeled in vitro NR Mtb using hypoxia, applied isotope metabolomics, and revealed that phosphoenolpyruvate (PEP) is nearly completely depleted in NR Mtb. This near loss of PEP reduces PEP-carbon flux toward multiple pathways essential for replication and drug sensitivity. Inversely, supplementing with PEP restored the carbon flux and the activities of the foregoing pathways, resulting in growth and heightened drug susceptibility of NR Mtb, which ultimately prevented the development of DR. Taken together, PEP depletion in NR Mtb is associated with the acquisition of drug tolerance and subsequent emergence of DR, demonstrating that PEP treatment is a possible metabolic modulation strategy to resensitize NR Mtb to conventional TB treatment and prevent the emergence of DR.


Assuntos
Antituberculosos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Tolerância a Medicamentos , Hipóxia/fisiopatologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fosfoenolpiruvato/metabolismo , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/patologia
7.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062787

RESUMO

Ferroptosis is a type of nonapoptotic cell death that is characteristically caused by phospholipid peroxidation promoted by radical reactions involving iron. Researchers have identified many of the protein factors that are encoded by genes that promote ferroptosis. Glutathione peroxidase 4 (GPX4) is a key enzyme that protects phospholipids from peroxidation and suppresses ferroptosis in a glutathione-dependent manner. Thus, the dysregulation of genes involved in cysteine and/or glutathione metabolism is closely associated with ferroptosis. From the perspective of cell dynamics, actively proliferating cells are more prone to ferroptosis than quiescent cells, which suggests that radical species generated during oxygen-involved metabolism are responsible for lipid peroxidation. Herein, we discuss the initial events involved in ferroptosis that dominantly occur in the process of energy metabolism, in association with cysteine deficiency. Accordingly, dysregulation of the tricarboxylic acid cycle coupled with the respiratory chain in mitochondria are the main subjects here, and this suggests that mitochondria are the likely source of both radical electrons and free iron. Since not only carbohydrates, but also amino acids, especially glutamate, are major substrates for central metabolism, dealing with nitrogen derived from amino groups also contributes to lipid peroxidation and is a subject of this discussion.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Oxirredução , Humanos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo
8.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062775

RESUMO

Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.


Assuntos
Neoplasias da Mama , Exercício Físico , Músculo Esquelético , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Qualidade de Vida , Terapia por Exercício/métodos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo
9.
Metabolomics ; 19(4): 30, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991292

RESUMO

INTRODUCTION: Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE: To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS: The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS: In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION: These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Humanos , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/genética , Proteômica , Metabolômica , Células Epiteliais/metabolismo
10.
Mol Biol Rep ; 50(3): 2651-2662, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36641493

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) transplantation therapy providing a great hope for the recovery of myocardial ischemic hypoxic injury. However, the microenvironment after myocardial injury is not conducive to the survival of BMSCs, which limits the therapeutic application of BMSCs. Our previous study has confirmed that the survival of BMSCs cells in the glucose and serum deprivation under hypoxia (GSDH) is increased after Andrographolide (AG) pretreatment, but whether this treatment could improve the effect of BMSCs in repairing of myocardial injury has not been verified. METHODS AND RESULT: We first treated H9C2 with GSDH to simulate the microenvironment of myocardial injury in vitro, then we pretreated rat primary BMSCs with AG, and collected conditioned medium derived from BMSCs (BMSCs-CM) and conditioned medium derived from AG-pretreated BMSCs (AG-BMSCs-CM) after GSDH treatment. And they were used to treat H9C2 cells under GSDH to further detect oxidative stress and metabolic changes. The results showed that AG-BMSCs-CM could be more advantageous for cardiomyocyte injury repair than BMSCs-CM, as indicated by the decrease of apoptosis rate and oxidative stress. The changes of mitochondria and lipid droplets results suggested that AG-BMSCs-CM can regulate metabolic remodeling of H9C2 cells to repair cell injury, and that AMPK was activated during this process. CONCLUSIONS: This study demonstrates, for the first time, the protective effect of AG-BMSCs-CM on GSDH-induced myocardial cell injury, providing a potential therapeutic strategy for clinical application.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Miócitos Cardíacos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Apoptose , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea/metabolismo
11.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175422

RESUMO

Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Miocardite , Humanos , Miocardite/patologia , Cardiomiopatia Dilatada/patologia , SARS-CoV-2 , Insuficiência Cardíaca/etiologia , Imunidade , Enterovirus Humano B
12.
Wei Sheng Yan Jiu ; 52(1): 119-122, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36750339

RESUMO

OBJECTIVE: To observe the effect of exogenous serine or glycine on the synthesis of selenoprotein and endogenous serine and the expression of metabolic enzymes in hepatocytes cultured with high-selenium in vitro and its dose-response relationship. METHODS: The experiment was divided into two parts, namely a inhibition experiment and a dose-response experiment, using L02 cells as the intervention target. In the inhibition experiment, the blank control group, high-Se(SeMet) group, serine intervention group and high-Se+serine intervention group were set up. Both SeMet and serine were given at a level of 0.05 µmol/L, and the blank control group was given the same volumes of saline. In the dose-response experiment, the concentration of SeMet was 0.05 µmol/L, and the intervention concentration gradients of serine or glycine were 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 and 500 µmol/L. The expression of phosphoglycerate dehydrogenase(PHGDH)、serine hydroxymethyltransferase 1(SHMT1)、methylenetetrahydrofolate reductase(MTHFR)、selenoprotein P(SELENOP) and glutathione peroxidase 1(GPX1)was detected by Western Blot(WB). RESULTS: (1)In the inhibition experiment, compared with the blank control group, the expression of selenium proteins(GPX1 and SELENOP) in L02 cells of the other three groups were significantly increased(P<0.05). Compared with the high expression of PHGDH in L02 cells of high-Se group, the expressions of PHGDH, SHMT1 and MTHFR in high-Se + serine group were significantly decreased(P<0.05). (2) In the dose-response experiment, the expression of PHGDH enzyme in L02 cells gradually decreased with the increase of the concentration of exogenous serine or glycine, showing an obvious dose-dependent effect. In contrast, none of the other metabolic enzymes(SHMT1 and MTHFR) showed similar trends in protein expression. CONCLUSION: The upregulated expression of PHGDH, the key enzyme in the de novo synthesis pathway of serine in hepatocytes cultured with high-selenium can be inhibited feedback by exogenous serine or endogenous serine transformed from exogenous glycine directly.


Assuntos
Selênio , Hepatócitos/metabolismo , Glutationa Peroxidase GPX1 , Serina/metabolismo , Glicina/metabolismo
13.
J Mol Cell Cardiol ; 171: 71-80, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777454

RESUMO

Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Neoplasias , Doenças Cardiovasculares/complicações , Metabolismo Energético , Cardiopatias/etiologia , Humanos
14.
Am J Physiol Heart Circ Physiol ; 322(5): H749-H761, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275762

RESUMO

Alterations in cardiac metabolism are strongly associated with the pathogenesis of heart failure (HF). We recently reported that glutamine-dependent anaplerosis, termed glutaminolysis, was activated by H2O2 stimulation in rat cardiomyocytes, which seemed to be an adaptive response by which cardiomyocytes survive acute stress. However, the molecular mechanisms and fundamental roles of glutaminolysis in the pathophysiology of the failing heart are still unknown. Here, we treated wild-type mice (C57BL/6J) and rat neonatal cardiomyocytes (RNCMs) and fibroblasts (RNCFs) with angiotensin II (ANG II) to induce pathological cardiac remodeling. Glutaminase 1 (GLS1), a rate-limiting glutaminolysis enzyme, was significantly increased in ANG II-induced mouse hearts, RNCMs and RNCFs. Unexpectedly, a GLS1 inhibitor attenuated ANG II-induced left ventricular hypertrophy and fibrosis in the mice, and gene knockdown and pharmacological perturbation of GLS1 suppressed hypertrophy and the proliferation of RNCMs and RNCFs, respectively. Using mass spectrometry (MS)-based stable isotope tracing with 13C-labeled glutamine, we observed glutamine metabolic flux in ANG II-treated RNCMs and RNCFs. The incorporation of 13C atoms into tricarboxylic acid (TCA) cycle intermediates and their derivatives was markedly enhanced in both cell types, indicating the activation of glutaminolysis in hypertrophied hearts. Notably, GLS1 inhibition reduced the production of glutamine-derived aspartate and citrate, which are required for the biosynthesis of nucleic acids and lipids, possibly contributing to the suppression of cardiac hypertrophy and fibrosis. The findings of the present study reveal that GLS1-mediated upregulation of glutaminolysis leads to maladaptive cardiac remodeling. Inhibition of this anaplerotic pathway could be a novel therapeutic approach for HF.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that increased GLS1 expression and subsequent activation of glutaminolysis are associated with exacerbation of cardiac hypertrophy and fibrosis. Inhibiting GLS1 antagonized the adverse cardiac remodeling in vitro and in vivo, partly due to reduction of glutamine-derived metabolites, which are necessary for cellular growth and proliferation. Increased glutamine utilization for anabolic reactions in cardiac cells may be related to the pathogenesis and development of HF.


Assuntos
Glutaminase , Remodelação Ventricular , Animais , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Ratos
15.
Biochem Biophys Res Commun ; 618: 15-23, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35714566

RESUMO

Hypoxia-inducible factor 1-α (HIF-1α) mediates the occurrence and development of renal diseases and fibrosis. In the process, dysregulated cellular metabolism was suggested to be involved in several pathological processes. Here, we found that HIF-1α expression was increased in the early stage of renal fibrosis, and significant metabolic remodeling was triggered. Epigenetic events that drive diseases were characterized previously. Our study showed that ten-eleven translocation-2 (TET2) was upregulated in both renal fibrosis models and metabolite-treated samples. Furthermore, we found that the promoter of α-SMA was hypomethylated at CpG sites, which promoted the expression of α-SMA and the occurrence of renal fibrosis. HIF-1α inhibition alleviated renal fibrosis development by improving metabolic remodeling and TET2 activation. Our studies provide novel insight into HIF-1α-mediated metabolic remodeling in the pathogenesis of renal fibrosis and propose a concept that targets this pathway to treat fibrotic disorders.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Nefropatias , Túbulos Renais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia
16.
Am J Physiol Renal Physiol ; 321(4): F455-F465, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423680

RESUMO

Recent studies have revealed the impact of antibiotic-induced microbiome depletion (AIMD) on host glucose homeostasis. The kidney has a critical role in systemic glucose homeostasis; however, information regarding the association between AIMD and renal glucose metabolism remains limited. Hence, we aimed to determine the effects of AIMD on renal glucose metabolism by inducing gut microbiome depletion using an antibiotic cocktail (ABX) composed of ampicillin, vancomycin, and levofloxacin in mice. The results showed that bacterial 16s rRNA expression, luminal concentrations of short-chain fatty acids and bile acids, and plasma glucose levels were significantly lower in ABX-treated mice than in vehicle-treated mice. In addition, ABX treatment significantly reduced renal glucose and pyruvate levels. mRNA expression levels of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the renal cortex were significantly higher in ABX-treated mice than in vehicle-treated mice. We further examined the impact of AIMD on the altered metabolic status in mice after ischemia-induced kidney injury. After exposure to ischemia for 60 min, renal pyruvate concentrations were significantly lower in ABX-treated mice than in vehicle-treated mice. ABX treatment caused a more severe tubular injury after ischemia-reperfusion. Our findings confirm that AIMD is associated with decreased pyruvate levels in the kidney, which may have been caused by the activation of renal gluconeogenesis. Thus, we hypothesized that AIMD would increase the vulnerability of the kidney to ischemia-reperfusion injury.NEW & NOTEWORTHY This study aimed to determine the impact of antibiotic-induced microbiome depletion (AIMD) on renal glucose metabolism in mice. This is the first report confirming that AIMD is associated with decreased levels of pyruvate, a key intermediate in glucose metabolism, which may have been caused by activation of renal gluconeogenesis. We hypothesized that AIMD can increase the susceptibility of the kidney to ischemia-reperfusion injury.


Assuntos
Injúria Renal Aguda/patologia , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/etiologia , Animais , Glicemia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Levofloxacino/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ácido Pirúvico/metabolismo , Vancomicina/farmacologia
17.
Biochem Biophys Res Commun ; 534: 687-693, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213841

RESUMO

BACKGROUND: Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear. OBJECTIVE: To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium. METHODS AND RESULTS: The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels. CONCLUSION: Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.


Assuntos
Glutamina/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Ciclo do Ácido Cítrico , Metabolismo Energético , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Insuficiência Cardíaca/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes e Vias Metabólicas , Miócitos Cardíacos/citologia , Estresse Oxidativo , Ratos
18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638917

RESUMO

The heart is an organ with high-energy demands in which the mitochondria are most abundant. They are considered the powerhouse of the cell and occupy a central role in cellular metabolism. The intermyofibrillar mitochondria constitute the majority of the three-mitochondrial subpopulations in the heart. They are also considered to be the most important in terms of their ability to participate in calcium and cellular signaling, which are critical for the regulation of mitochondrial function and adenosine triphosphate (ATP) production. This is because they are located in very close proximity with the endoplasmic reticulum (ER), and for the presence of tethering complexes enabling interorganelle crosstalk via calcium signaling. Calcium is an important second messenger that regulates mitochondrial function. It promotes ATP production and cellular survival under physiological changes in cardiac energetic demand. This is accomplished in concert with signaling pathways that regulate both calcium cycling and mitochondrial function. Perturbations in mitochondrial homeostasis and metabolic remodeling occupy a central role in the pathogenesis of heart failure. In this review we will discuss perturbations in ER-mitochondrial crosstalk and touch on important signaling pathways and molecular mechanisms involved in the dysregulation of calcium homeostasis and mitochondrial function in heart failure.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Insuficiência Cardíaca/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Insuficiência Cardíaca/patologia , Homeostase/fisiologia , Humanos , Mitocôndrias Cardíacas/metabolismo
19.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008662

RESUMO

Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography-mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid ß-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum-mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.


Assuntos
Insuficiência Cardíaca Sistólica/metabolismo , Redes e Vias Metabólicas , Metabolômica , Adenilato Quinase/metabolismo , Animais , Cromatografia Líquida , Ciclo do Ácido Cítrico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicólise , Espectrometria de Massas , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Transdução de Sinais
20.
Development ; 144(4): 541-551, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28196802

RESUMO

Pluripotent cells from the early stages of embryonic development have the unlimited capacity to self-renew and undergo differentiation into all of the cell types of the adult organism. These properties are regulated by tightly controlled networks of gene expression, which in turn are governed by the availability of transcription factors and their interaction with the underlying epigenetic landscape. Recent data suggest that, perhaps unexpectedly, some key epigenetic marks, and thereby gene expression, are regulated by the levels of specific metabolites. Hence, cellular metabolism plays a vital role beyond simply the production of energy, and may be involved in the regulation of cell fate. In this Review, we discuss the metabolic changes that occur during the transitions between different pluripotent states both in vitro and in vivo, including during reprogramming to pluripotency and the onset of differentiation, and we discuss the extent to which distinct metabolites might regulate these transitions.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Células-Tronco Embrionárias/citologia , Epigênese Genética , Humanos , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA