Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.690
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(18): 3307-3328.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987213

RESUMO

Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.


Assuntos
Microbiota , Adoçantes não Calóricos , Adulto , Animais , Aspartame/farmacologia , Glicemia , Humanos , Camundongos , Adoçantes não Calóricos/análise , Adoçantes não Calóricos/farmacologia , Sacarina/farmacologia
2.
Cell ; 185(19): 3501-3519.e20, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041436

RESUMO

How intestinal microbes regulate metabolic syndrome is incompletely understood. We show that intestinal microbiota protects against development of obesity, metabolic syndrome, and pre-diabetic phenotypes by inducing commensal-specific Th17 cells. High-fat, high-sugar diet promoted metabolic disease by depleting Th17-inducing microbes, and recovery of commensal Th17 cells restored protection. Microbiota-induced Th17 cells afforded protection by regulating lipid absorption across intestinal epithelium in an IL-17-dependent manner. Diet-induced loss of protective Th17 cells was mediated by the presence of sugar. Eliminating sugar from high-fat diets protected mice from obesity and metabolic syndrome in a manner dependent on commensal-specific Th17 cells. Sugar and ILC3 promoted outgrowth of Faecalibaculum rodentium that displaced Th17-inducing microbiota. These results define dietary and microbiota factors posing risk for metabolic syndrome. They also define a microbiota-dependent mechanism for immuno-pathogenicity of dietary sugar and highlight an elaborate interaction between diet, microbiota, and intestinal immunity in regulation of metabolic disorders.


Assuntos
Síndrome Metabólica , Microbiota , Animais , Dieta Hiperlipídica , Açúcares da Dieta , Interleucina-17 , Mucosa Intestinal , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Células Th17
3.
Cell ; 168(5): 758-774, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235194

RESUMO

Because human energy metabolism evolved to favor adiposity over leanness, the availability of palatable, easily attainable, and calorically dense foods has led to unprecedented levels of obesity and its associated metabolic co-morbidities that appear resistant to traditional lifestyle interventions. However, recent progress identifying the molecular signaling pathways through which the brain and the gastrointestinal system communicate to govern energy homeostasis, combined with emerging insights on the molecular mechanisms underlying successful bariatric surgery, gives reason to be optimistic that novel precision medicines that mimic, enhance, and/or modulate gut-brain signaling can have unprecedented potential for stopping the obesity and type 2 diabetes pandemics.


Assuntos
Encéfalo/fisiologia , Metabolismo Energético , Trato Gastrointestinal/fisiologia , Animais , Regulação do Apetite , Encéfalo/anatomia & histologia , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/inervação , Homeostase , Humanos , Vias Neurais , Prazer , Saciação
4.
Physiol Rev ; 101(2): 683-731, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790577

RESUMO

Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Ácidos e Sais Biliares/fisiologia , Animais , Ácidos e Sais Biliares/biossíntese , Doenças dos Ductos Biliares/metabolismo , Doenças dos Ductos Biliares/fisiopatologia , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Fígado/metabolismo
5.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
6.
Annu Rev Physiol ; 86: 175-198, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931169

RESUMO

The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/metabolismo , Tecido Adiposo/fisiologia , Miocárdio/metabolismo , Metabolismo Energético
7.
Proc Natl Acad Sci U S A ; 121(32): e2403770121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074282

RESUMO

Time-restricted feeding (RF) is known to shift the phasing of gene expression in most primary metabolic tissues, whereas a time misalignment between the suprachiasmatic nucleus circadian clock (SCNCC) and its peripheral CCs (PCC's) is known to induce various pathophysiological conditions, including a metabolic syndrome. We now report that a unique "light therapy," involving different light intensities (TZT0-ZT12150-TZT0-ZT12700 lx, TZT0-ZT1275-TZT0-ZT12150 lx, and TZT0-ZT12350-TZT0-ZT12700 lx), realigns the RF-generated misalignment between the SCNCC and the PCC's. Using such high-light regime, we show that through shifting the SCNCC and its activity, it is possible in a RF and "night-shifted mouse model" to prevent/correct pathophysiologies (e.g., a metabolic syndrome, a loss of memory, cardiovascular abnormalities). Our data indicate that such a "high-light regime" could be used as a unique chronotherapy, for those working on night shifts or suffering from jet-lag, in order to realign their SCNCC and PCC's, thereby preventing the generation of pathophysiological conditions.


Assuntos
Relógios Circadianos , Núcleo Supraquiasmático , Animais , Relógios Circadianos/fisiologia , Camundongos , Núcleo Supraquiasmático/metabolismo , Síndrome Metabólica/terapia , Síndrome Metabólica/metabolismo , Fototerapia/métodos , Masculino , Camundongos Endogâmicos C57BL , Ritmo Circadiano/fisiologia , Luz
8.
Proc Natl Acad Sci U S A ; 120(1): e2219054120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574676

RESUMO

Bioprosthetic heart valves (BHV), made from glutaraldehyde-fixed xenografts, are widely used for surgical and transcatheter valve interventions but suffer from limited durability due to structural valve degeneration (SVD). We focused on metabolic syndrome (MetS), a risk factor for SVD and a highly prevalent phenotype in patients affected by valvular heart disease with a well-recognized cluster of comorbidities. Multicenter patient data (N = 251) revealed that patients with MetS were at significantly higher risk of accelerated SVD and required BHV replacement sooner. Using a next-generation proteomics approach, we identified significantly differential proteomes from leaflets of explanted BHV from MetS and non-MetS patients (N = 24). Given the significance of protein infiltration in MetS-induced SVD, we then demonstrated the protective effects of polyoxazoline modification of BHV leaflets to mitigate MetS-induced BHV biomaterial degeneration (calcification, tissue cross-linking, and microstructural changes) in an ex vivo serum model and an in vivo with MetS rat subcutaneous implants.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Síndrome Metabólica , Humanos , Animais , Ratos , Síndrome Metabólica/complicações , Valvas Cardíacas , Fatores de Risco , Valva Aórtica/cirurgia
9.
J Biol Chem ; 300(8): 107538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971308

RESUMO

Excessive fructose consumption is a primary contributor to the global surges in obesity, cancer, and metabolic syndrome. Fructolysis is not robustly regulated and is initiated by ketohexokinase (KHK). In this study, we determined the crystal structure of KHK-A, one of two human isozymes of KHK, in the apo-state at 1.85 Å resolution, and we investigated the roles of residues in the fructose-binding pocket by mutational analysis. Introducing alanine at D15, N42, or N45 inactivated KHK-A, whereas mutating R141 or K174 reduced activity and thermodynamic stability. Kinetic studies revealed that the R141A and K174A mutations reduced fructose affinity by 2- to 4-fold compared to WT KHK-A, without affecting ATP affinity. Molecular dynamics simulations provided mechanistic insights into the potential roles of the mutated residues in ligand coordination and the maintenance of an open state in one monomer and a closed state in the other. Protein-protein interactome analysis indicated distinct expression patterns and downregulation of partner proteins in different tumor tissues, warranting a reevaluation of KHK's role in cancer development and progression. The connections between different cancer genes and the KHK signaling pathway suggest that KHK is a potential target for preventing cancer metastasis. This study enhances our understanding of KHK-A's structure and function and offers valuable insights into potential targets for developing treatments for obesity, cancer, and metabolic syndrome.


Assuntos
Frutoquinases , Frutose , Humanos , Frutose/metabolismo , Frutose/química , Frutoquinases/metabolismo , Frutoquinases/genética , Frutoquinases/química , Cristalografia por Raios X , Sítios de Ligação , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Mutação , Cinética
10.
Circulation ; 149(23): 1789-1801, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38583093

RESUMO

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) consistently improve heart failure and kidney-related outcomes; however, effects on major adverse cardiovascular events (MACE) across different patient populations are less clear. METHODS: This was a collaborative trial-level meta-analysis from the SGLT2i Meta-analysis Cardio-Renal Trialists Consortium, which includes all phase 3, placebo-controlled, outcomes trials of SGLT2i across 3 patient populations (patients with diabetes at high risk for atherosclerotic cardiovascular disease, heart failure [HF], or chronic kidney disease). The outcomes of interest were MACE (composite of cardiovascular death, myocardial infarction , or stroke), individual components of MACE (inclusive of fatal and nonfatal events), all-cause mortality, and death subtypes. Effect estimates for SGLT2i versus placebo were meta-analyzed across trials and examined across key subgroups (established atherosclerotic cardiovascular disease, previous myocardial infarction, diabetes, previous HF, albuminuria, chronic kidney disease stages, and risk groups). RESULTS: A total of 78 607 patients across 11 trials were included: 42 568 (54.2%), 20 725 (26.4%), and 15 314 (19.5%) were included from trials of patients with diabetes at high risk for atherosclerotic cardiovascular disease, HF, or chronic kidney disease, respectively. SGLT2i reduced the rate of MACE by 9% (hazard ration [HR], 0.91 [95% CI, 0.87-0.96], P<0.0001) with a consistent effect across all 3 patient populations (I2=0%) and across all key subgroups. This effect was primarily driven by a reduction in cardiovascular death (HR, 0.86 [95% CI, 0.81-0.92], P<0.0001), with no significant effect for myocardial infarction in the overall population (HR, 0.95 [95% CI, 0.87-1.04], P=0.29), and no effect on stroke (HR, 0.99 [95% CI, 0.91-1.07], P=0.77). The benefit for cardiovascular death was driven primarily by reductions in HF death and sudden cardiac death (HR, 0.68 [95% CI, 0.46-1.02] and HR, 0.86 [95% CI, 0.78-0.95], respectively) and was generally consistent across subgroups, with the possible exception of being more apparent in those with albuminuria (Pinteraction=0.02). CONCLUSIONS: SGLT2i reduce the risk of MACE across a broad range of patients irrespective of atherosclerotic cardiovascular disease, diabetes, kidney function, or other major clinical characteristics at baseline. This effect is driven primarily by a reduction of cardiovascular death, particularly HF death and sudden cardiac death, without a significant effect on myocardial infarction in the overall population, and no effect on stroke. These data may help inform selection for SGLT2i therapies across the spectrum of cardiovascular-kidney-metabolic disease.


Assuntos
Doenças Cardiovasculares , Inibidores do Transportador 2 de Sódio-Glicose , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Humanos , Doenças Cardiovasculares/mortalidade , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Resultado do Tratamento , Idoso
11.
Genes Cells ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136356

RESUMO

Identifying specific markers of adipose stem and progenitor cells (ASPCs) in vivo is crucial for understanding the biology of white adipose tissues (WAT). PDGFRα-positive perivascular stromal cells represent the best candidates for ASPCs. This cell lineage differentiates into myofibroblasts that contribute to the impairment of WAT function. However, ASPC marker protein(s) that are functionally crucial for maintaining WAT homeostasis are unknown. We previously identified Meflin as a marker of mesenchymal stem cells (MSCs) in bone marrow and tissue-resident perivascular fibroblasts in various tissues. We also demonstrated that Meflin maintains the undifferentiated status of MSCs/fibroblasts. Here, we show that Meflin is expressed in WAT ASPCs. A lineage-tracing experiment showed that Meflin+ ASPCs proliferate in the WAT of obese mice induced by a high-fat diet (HFD), while some of them differentiate into myofibroblasts or mature adipocytes. Meflin knockout mice fed an HFD exhibited a significant fibrotic response as well as increases in adipocyte cell size and the number of crown-like structures in WAT, accompanied by impaired glucose tolerance. These data suggested that Meflin expressed by ASPCs may have a role in reducing disease progression associated with WAT dysfunction.

12.
FASEB J ; 38(7): e23579, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568838

RESUMO

Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Fígado/metabolismo , Camundongos Obesos , Ciclo de Peso , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
13.
FASEB J ; 38(14): e23789, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018098

RESUMO

Diabetic nephropathy (DN) is a major healthcare challenge for individuals with diabetes and associated with increased cardiovascular morbidity and mortality. The existing rodent models do not fully represent the complex course of the human disease. Hence, developing a translational model of diabetes that reproduces both the early and the advanced characteristics of DN and faithfully recapitulates the overall human pathology is an unmet need. Here, we introduce the Nile grass rat (NGR) as a novel model of DN and characterize key pathologies underlying DN. NGRs spontaneously developed insulin resistance, reactive hyperinsulinemia, and hyperglycemia. Diabetic NGRs evolved DN and the key histopathological aspects of the human advanced DN, including glomerular hypertrophy, infiltration of mononuclear cells, tubular dilatation, and atrophy. Enlargement of the glomerular tufts and the Bowman's capsule areas accompanied the expansion of the Bowman's space. Glomerular sclerosis, renal arteriolar hyalinosis, Kimmelsteil-Wilson nodular lesions, and protein cast formations in the kidneys of diabetic NGR occurred with DN. Diabetic kidneys displayed interstitial and glomerular fibrosis, key characteristics of late human pathology as well as thickening of the glomerular basement membrane and podocyte effacement. Signs of injury included glomerular lipid accumulation, significantly more apoptotic cells, and expression of KIM-1. Diabetic NGRs became hypertensive, a known risk factor for kidney dysfunction, and showed decreased glomerular filtration rate. Diabetic NGRs recapitulate the breadth of human DN pathology and reproduce the consequences of chronic kidney disease, including injury and loss of function of the kidney. Hence, NGR represents a robust model for studying DN-related complications and provides a new foundation for more detailed mechanistic studies of the genesis of nephropathy, and the development of new therapeutic approaches.


Assuntos
Nefropatias Diabéticas , Modelos Animais de Doenças , Animais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Ratos , Masculino , Humanos , Resistência à Insulina , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Rim/patologia , Rim/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo
14.
FASEB J ; 38(7): e23574, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551804

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is a key enzyme in the activation of both classic and 11-oxygenated androgens. In adipose tissue, AKR1C3 is co-expressed with 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1), which catalyzes not only the local activation of glucocorticoids but also the inactivation of 11-oxygenated androgens, and thus has the potential to counteract AKR1C3. Using a combination of in vitro assays and in silico modeling we show that HSD11B1 attenuates the biosynthesis of the potent 11-oxygenated androgen, 11-ketotestosterone (11KT), by AKR1C3. Employing ex vivo incubations of human female adipose tissue samples we show that inhibition of HSD11B1 results in the increased peripheral biosynthesis of 11KT. Moreover, circulating 11KT increased 2-3 fold in individuals with type 2 diabetes after receiving the selective oral HSD11B1 inhibitor AZD4017 for 35 days, thus confirming that HSD11B1 inhibition results in systemic increases in 11KT concentrations. Our findings show that HSD11B1 protects against excess 11KT production by adipose tissue, a finding of particular significance when considering the evidence for adverse metabolic effects of androgens in women. Therefore, when targeting glucocorticoid activation by HSD11B1 inhibitor treatment in women, the consequently increased generation of 11KT may offset beneficial effects of decreased glucocorticoid activation.


Assuntos
Androgênios , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Androgênios/metabolismo , Glucocorticoides , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Tecido Adiposo/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 44(2): 328-333, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059350

RESUMO

The tremendous burden of lipid metabolism diseases, coupled with recent developments in human somatic gene editing, has motivated researchers to propose population-wide somatic gene editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) within the livers of otherwise healthy humans. The best-characterized molecular function of PCSK9 is its ability to regulate plasma LDL (low-density lipoprotein) levels through promoting LDL receptor degradation. Individuals with loss-of-function PCSK9 variants have lower levels of plasma LDL and reduced cardiovascular disease. Gain-of-function variants of PCSK9 are strongly associated with familial hypercholesterolemia. A new therapeutic strategy delivers CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats; CRISPR-associated protein 9) specifically to liver cells to edit the wild-type alleles of PCSK9 with the goal of producing a loss-of-function allele. This direct somatic gene editing approach is being pursued despite the availability of US Food and Drug Administration-approved PCSK9 inhibitors that lower plasma LDL levels. Here, we discuss other characterized functions of PCSK9 including its role in infection and host immunity. We explore important factors that may have contributed to the evolutionary selection of PCSK9 in several vertebrates, including humans. Until such time that more fully understand the multiple biological roles of PCSK9, the ethics of permanently editing the gene locus in healthy, wild-type populations remains highly questionable.


Assuntos
Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Animais , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/genética , Alelos , Receptores de LDL/genética
16.
Arterioscler Thromb Vasc Biol ; 44(6): 1346-1364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660806

RESUMO

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.


Assuntos
Tecido Adiposo Branco , Aterosclerose , Modelos Animais de Doenças , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma , Receptores de LDL , Animais , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/genética , Aterosclerose/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Receptores de LDL/genética , Receptores de LDL/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Masculino , Inibidores de Proteassoma/farmacologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Doenças da Aorta/prevenção & controle , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Placa Aterosclerótica , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Knockout para ApoE , Camundongos , Metabolismo Energético/efeitos dos fármacos , Oligopeptídeos
17.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191665

RESUMO

Metabolic syndrome exhibits associations with diverse neurological disorders, and its potential influence on the cerebral cortex may be one of the many potential factors contributing to these adverse outcomes. In this study, we aimed to investigate the causal relationship between metabolic syndrome and changes in cerebral cortex structure using Mendelian randomization analysis. Genome-wide association study data for the 5 components of metabolic syndrome were obtained from individuals of European descent in the UK Biobank. Genome-wide association study data for 34 known cortical functional regions were sourced from the ENIGMA Consortium. Data on Alzheimer's disease, major depression, and anxiety disorder were obtained from the IEU Open genome-wide association study database. The causal links between metabolic syndrome elements and cerebral cortex architecture were evaluated using inverse variance weighting, Mendelian randomization-Egger, and weighted median techniques, with inverse variance weighting as the primary method. Inverse variance weighting, Mendelian randomization Egger, weighted median, simple mode, and weighted mode methods were employed to assess the relationships between metabolic syndrome and neurological diseases (Alzheimer's disease, major depression, and anxiety disorder). Outliers, heterogeneity, and pleiotropy were assessed using Cochran's Q test, MR-PRESSO, leave-one-out analysis, and funnel plots. Globally, no causal link was found between metabolic syndrome and overall cortical thickness or surface area. However, regionally, metabolic syndrome may influence the surface area of specific regions, including the caudal anterior cingulate, postcentral, posterior cingulate, rostral anterior cingulate, isthmus cingulate, superior parietal, rostral middle frontal, middle temporal, insula, pars opercularis, cuneus, and inferior temporal. It may also affect the thickness of the medial orbitofrontal, caudal middle frontal, paracentral, superior frontal, superior parietal, and supramarginal regions. These findings were nominally significant and withstood sensitivity analyses, showing no substantial heterogeneity or pleiotropy. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. This study suggests a potential association between metabolic syndrome and changes in cerebral cortex structure, which may underlie certain neurological disorders. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. Early diagnosis of metabolic syndrome holds significance in preventing these neurological disorders.


Assuntos
Córtex Cerebral , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Transtorno Depressivo Maior/genética , Polimorfismo de Nucleotídeo Único
18.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39152671

RESUMO

Metabolic syndrome has been associated with reduced brain white matter integrity in older individuals. However, less is known about how metabolic syndrome might impact white matter integrity in younger populations. This study examined metabolic syndrome-related global and regional white matter integrity differences in a sample of 537 post-9/11 Veterans. Metabolic syndrome was defined as ≥3 factors of: increased waist circumference, hypertriglyceridemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. T1 and diffusion weighted 3 T MRI scans were processed using the FreeSurfer image analysis suite and FSL Diffusion Toolbox. Atlas-based regions of interest were determined from a combination of the Johns Hopkins University atlas and a Tract-Based Spatial Statistics-based FreeSurfer WMPARC white matter skeleton atlas. Analyses revealed individuals with metabolic syndrome (n = 132) had significantly lower global fractional anisotropy than those without metabolic syndrome (n = 405), and lower high-density lipoprotein cholesterol levels was the only metabolic syndrome factor significantly related to lower global fractional anisotropy levels. Lobe-specific analyses revealed individuals with metabolic syndrome had decreased fractional anisotropy in frontal white matter regions compared with those without metabolic syndrome. These findings indicate metabolic syndrome is prevalent in this sample of younger Veterans and is related to reduced frontal white matter integrity. Early intervention for metabolic syndrome may help alleviate adverse metabolic syndrome-related brain and cognitive effects with age.


Assuntos
Síndrome Metabólica , Veteranos , Substância Branca , Humanos , Síndrome Metabólica/patologia , Síndrome Metabólica/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adulto Jovem , Imageamento por Ressonância Magnética , Anisotropia , Imagem de Tensor de Difusão/métodos , Ataques Terroristas de 11 de Setembro
19.
Eur Heart J ; 45(9): 688-703, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152853

RESUMO

BACKGROUND AND AIMS: Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS: The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS: Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as ß-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS: These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hipertensão , Receptores de LDL , Animais , Humanos , Camundongos , Anti-Hipertensivos , Cardiomiopatias Diabéticas/prevenção & controle , Hipertensão/prevenção & controle , Receptores de LDL/antagonistas & inibidores
20.
J Mol Cell Cardiol ; 196: 35-51, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251059

RESUMO

Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo ß-adrenergic receptor (ß-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA