Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2305325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641191

RESUMO

The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed. This method uses bovine serum albumin microbubbles (BSA MBs) as soft templates and carriers, enabling the efficient pre-encapsulation of guest species by leveraging the coordination assembly of tannic acid (TA) and FeIII ions. The addition of TA and FeIII induces a change in the protein conformation of BSA MBs and produces semipermeable capsule shells, which allow gas to escape from the MBs without template removal. The MBs-templated strategy can produce highly biocompatible capsules with controllable structure and size, and it is applicable to produce other MPNs systems like BSA-TA-CuII and BSA-TA-NiII . Finally, those MBs-templated MPNs capsules can be further functionalized or modified for the loading of magnetic nanoparticles and the pre-encapsulation of model molecules through covalence or physical adsorption, exhibiting great promise in biomedical applications.

2.
Small ; : e2401776, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031853

RESUMO

The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.

3.
Angew Chem Int Ed Engl ; : e202410043, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922736

RESUMO

Crystalline metal-organic frameworks (MOFs) have garnered extensive attention owing to their highly ordered porous structure and physicochemical properties. However, their practical application often requires their integration with various substrates, which is challenging because of their weakly adhesive nature and the diversity of substrates that exhibit different properties. Herein, we report the use of amorphous metal-phenolic network coatings to facilitate the growth of crystalline MOF coatings on various particle and planar substrates. Crystalline MOFs with different metal ions and morphologies were successfully deposited on substrates (13 types) of varying sizes, shapes, and surface chemistries. Furthermore, the physicochemical properties of the coated crystalline MOFs (e.g., composition, thickness) could be tuned using different synthesis conditions. The engineered MOF-coated membranes demonstrated excellent liquid and gas separation performance, exhibiting a high H2 permeance of 63200 GPU and a H2/CH4 selectivity of 10.19, likely attributable to the thin nature of the coating (~180 nm). Considering the vast array of MOFs available (>90,000) and the diversity of substrates, this work is expected to pave the way for creating a wide range of MOF composites and coatings with potential applications in diverse fields.

4.
Small ; 19(19): e2207825, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772903

RESUMO

Nowadays, Fenton chemistry-based chemodynamic therapy (CDT) is an emerging approach to killing tumor cells by converting endogenous H2 O2 into cytotoxic hydroxyl radicals (·OH). However, the elimination of ·OH by intracellular overexpressed glutathione (GSH) results in unsatisfactory antitumor efficiency. In addition, the single mode of consuming GSH and undesirable drug loading efficiency cannot guarantee the efficient cancer cells killing effect. Herein, a simple one-step strategy for the construction of Fe3+ -naphthazarin metal-phenolic networks (FNP MPNs) with ultrahigh loading capacity, followed by the modification of NH2 -PEG-NH2 , is developed. The carrier-free FNP MPNs can be triggered by acid and GSH, and rapidly release naphthazarin and Fe3+ , which is further reduced to Fe2+ that exerts Fenton catalytic activity to produce abundant ·OH. Meanwhile, the Michael addition between naphthazarin and GSH can lead to GSH depletion and thus achieve tumor microenvironment (TME)-triggered enhanced CDT, followed by activating ferroptosis and apoptosis. In addition, the reduced Fe2+ as a T1 -weighted contrast agent endows the FNP MPNs with magnetic resonance imaging (MRI) functionality. Overall, this work is the debut of naphthazarin as ligands to fabricate functional MPNs for effectively depleting GSH, disrupting intracellular redox homeostasis, and enhancing CDT effects, which opens new perspectives on multifunctional MPNs for tumor synergistic therapy.


Assuntos
Ferroptose , Naftoquinonas , Neoplasias , Compostos Férricos , Apoptose , Glutationa , Metais , Fenóis , Neoplasias/tratamento farmacológico
5.
Small ; 18(27): e2202604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661593

RESUMO

Macrophages play essential roles in the progression of rheumatoid arthritis (RA), which are polarized into the pro-inflammatory M1 phenotype with significant oxidative stress and cytokines excretion. Herein, an active targeting nanomedicine based on metal-organic frameworks (MOFs) to re-educate the diseased macrophages for RA therapy is reported. The MOFs are prepared via coordination between tannic acid (TA) and Fe3+ , and anti-TNF-α siRNA is loaded via a simple sonication process, achieving high loading capacity comparable to cationic vectors. The MOFs show excellent biocompatibility, and enable rapid endo/lysosome escape of siRNA via the proton-sponge effect for effective cytokines down-regulation. Importantly, such nanomedicine displays intrinsic radicals scavenging capability to eliminate a broad spectrum of reactive oxygen and nitrogen species (RONS), which in turn repolarizes the M1 macrophages into anti-inflammatory M2 phenotypes for enhanced RA therapy in combination with siRNA. The MOFs are further modified with bovine serum albumin (BSA) to allow cascade RA joint and diseased macrophages targeted delivery. As a result, an excellent anti-RA efficacy is achieved in a collagen-induced arthritis mice model. This work provides a robust gene vector with great translational potential, and offers a vivid example of rationally designing MOF structure with multifunctionalities to synergize with its payload for enhanced disease treatment.


Assuntos
Artrite Reumatoide , Estruturas Metalorgânicas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Citocinas , Camundongos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Inibidores do Fator de Necrose Tumoral
6.
Small ; 17(43): e2100314, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34018690

RESUMO

Nanomedicine integrates different functional materials to realize the customization of carriers, aiming at increasing the cancer therapeutic efficacy and reducing the off-target toxicity. However, efforts on developing new drug carriers that combine precise diagnosis and accurate treatment have met challenges of uneasy synthesis, poor stability, difficult metabolism, and high cytotoxicity. Metal-phenolic networks (MPNs), making use of the coordination between phenolic ligands and metal ions, have emerged as promising candidates for nanomedicine, most notably through the service as multifunctional theranostic nanoplatforms. MPNs present unique properties, such as rapid preparation, negligible cytotoxicity, and pH responsiveness. Additionally, MPNs can be further modified and functionalized to meet specific application requirements. Here, the classification of polyphenols is first summarized, followed by the introduction of the properties and preparation strategies of MPNs. Then, their recent advances in biomedical sciences including bioimaging and anti-tumor therapies are highlighted. Finally, the main limitations, challenges, and outlooks regarding MPNs are raised and discussed.


Assuntos
Neoplasias , Medicina de Precisão , Portadores de Fármacos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica
7.
Small ; 17(29): e2100789, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34142432

RESUMO

Metal-phenolic networks (MPNs) are an emerging class of supramolecular surface modifiers with potential use in various fields including drug delivery. Here, the development of a unique MPN-integrated core-satellite nanosystem (CS-NS) is reported. The "core" component of CS-NS comprises a liposome loaded with EDTA (a metal ion chelator) in the aqueous core and DiR (a near-infrared photothermal transducer) in the bilayer. The "satellite" component comprises mesoporous silica nanoparticles (MSNs) encapsulating doxorubicin and is coated with a Cu2+ -tannic acid MPN. Liposomes and MSNs self-assemble into the CS-NS through adhesion mediated by the MPN. When irradiated with an 808 nm laser, CS-NS liberated the entrapped EDTA, leading to Cu2+ chelation and subsequent disassembly of the core-satellite nanostructure. Photo-conversion from the large assembly to the small constituent particles proceeded within 5 min. Light-triggered CS-NS disassembly enhanced the carrier and cargo penetration and accumulation in tumor spheroids in vitro and in orthotopic murine mammary tumors in vivo. CS-NS is long circulating in the blood and conferred improved survival outcomes to tumor-bearing mice treated with light, compared to controls. These results demonstrate an MPN-integrated multistage nanosystem for improved solid tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipossomos , Camundongos , Neoplasias/tratamento farmacológico
8.
Angew Chem Int Ed Engl ; 60(10): 5421-5428, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258208

RESUMO

Metal-organic frameworks (MOFs) have recently emerged as excellent hosting matrices for enzyme immobilization, offering superior physical and chemical protection for biocatalytic reactions. However, for multienzyme and cofactor-dependent biocatalysis, the subtle orchestration of enzymes and cofactors is largely disrupted upon immobilizing in the rigid crystalline MOF network, which leads to a much reduced biocatalytic efficiency. Herein, we constructed hierarchically porous MOFs by controlled structural etching to enhance multienzyme and cofactor-dependent enzyme biocatalysis. The expanded size of the pores can provide sufficient space for accommodated enzymes to reorientate and spread within MOFs in their lower surface energy state as well as to decrease the inherent barriers to accelerate the diffusion rate of reactants and intermediates. Moreover, the developed hierarchically porous MOFs demonstrated outstanding tolerance to inhospitable surroundings and recyclability.


Assuntos
Biocatálise/efeitos dos fármacos , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Armoracia/enzimologia , Glucose/química , NAD/química , Oxirredução , Fenazinas/síntese química , Fenilenodiaminas/química , Porosidade
9.
Small ; 16(31): e2000897, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32537936

RESUMO

Fenton reaction-mediated chemodynamic therapy (CDT) can kill cancer cells via the conversion of H2 O2 to highly toxic HO•. However, problems such as insufficient H2 O2 levels in the tumor tissue and low Fenton reaction efficiency severely limit the performance of CDT. Here, the prodrug tirapazamine (TPZ)-loaded human serum albumin (HSA)-glucose oxidase (GOx) mixture is prepared and modified with a metal-polyphenol network composed of ferric ions (Fe3+ ) and tannic acid (TA), to obtain a self-amplified nanoreactor termed HSA-GOx-TPZ-Fe3+ -TA (HGTFT) for sustainable and cascade cancer therapy with exogenous H2 O2 production and TA-accelerated Fe3+ /Fe2+ conversion. The HGTFT nanoreactor can efficiently convert oxygen into HO• for CDT, consume glucose for starvation therapy, and provide a hypoxic environment for TPZ radical-mediated chemotherapy. Besides, it is revealed that the nanoreactor can significantly elevate the intracellular reactive oxygen species content and hypoxia level, decrease the intracellular glutathione content, and release metal ions in the tumors for metal ion interference therapy (also termed "ion-interference therapy" or "metal ion therapy"). Further, the nanoreactor can also increase the tumor's hypoxia level and efficiently inhibit tumor growth. It is believed that this tumor microenvironment-regulable nanoreactor with sustainable and cascade anticancer performance and excellent biosafety represents an advance in nanomedicine.


Assuntos
Neoplasias , Oxigênio , Glucose , Glucose Oxidase , Humanos , Hipóxia , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente Tumoral
10.
Small ; 14(39): e1802342, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30156378

RESUMO

Interfacial self-assembly is a powerful organizational force for fabricating functional nanomaterials, including nanocarriers, for imaging and drug delivery. Herein, the interfacial self-assembly of pH-responsive metal-phenolic networks (MPNs) on the liquid-liquid interface of oil-in-water emulsions is reported. Oleic acid emulsions of 100-250 nm in diameter are generated by ultrasonication, to which poly(ethylene glycol) (PEG)-based polyphenolic ligands are assembled with simultaneous crosslinking by metal ions, thus forming an interfacial MPN. PEG provides a protective barrier on the emulsion phase and renders the emulsion low fouling. The MPN-coated emulsions have a similar size and dispersity, but an enhanced stability when compared with the uncoated emulsions, and exhibit a low cell association in vitro, a blood circulation half-life of ≈50 min in vivo, and are nontoxic to healthy mice. Furthermore, a model anticancer drug, doxorubicin, can be encapsulated within the emulsion phase at a high loading capacity (≈5 fg of doxorubicin per emulsion particle). The MPN coating imparts pH-responsiveness to the drug-loaded emulsions, leading to drug release at cell internalization pH and a potent cell cytotoxicity. The results highlight a straightforward strategy for the interfacial nanofabrication of pH-responsive emulsion-MPN systems with potential use in biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Nanoestruturas/química , Animais , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Camundongos , Ácido Oleico/química , Polietilenoglicóis/química
11.
Int J Biol Macromol ; 264(Pt 1): 130593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437934

RESUMO

Bacterial infection remarkably impedes wound healing, with antibiotics traditionally serving as the primary therapeutic intervention. However, the escalating misuse of antibiotics and the emergence of bacterial resistance present substantial treatment challenges for infected wounds. Consequently, the development of antibiotic-free antimicrobial dressings holds pertinent research and clinical relevance. To this end, this study aimed to introduce an all-natural hydrogel dressing, amalgamating polyphenols and polysaccharides, exhibiting pronounced antibacterial and antioxidant properties without relying on antibiotics. First, we constructed curcumin-tannic acid­zinc ion nanospheres (CTZN) through self-assembly. Our experimental results showed that the nanospheres had excellent biocompatibility, antioxidant, and antimicrobial abilities. Subsequently, we prepared carboxymethylated chitosan/oxidized sodium alginate hydrogels via Schiff base reactions. Incorporation of CTZN into the hydrogel system not only improves the inherent qualities of the hydrogel but also confers multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory abilities. In this study, we enhanced the physicochemical properties and biological activity of hydrogels by introducing natural material nanospheres, offering a novel approach that could pave the way for the development of purely natural biomaterial dressings.


Assuntos
Quitosana , Curcumina , Nanosferas , Polifenóis , Prunella , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Antibacterianos/farmacologia , Quitosana/farmacologia , Hidrogéis/farmacologia
12.
Colloids Surf B Biointerfaces ; 234: 113640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042109

RESUMO

A tannate-iron network-derived peroxidase-like catalyst loaded with Fe ions on carbon nitride (C3N4) was reported for detection of total antioxidant capacity (TAC) in food in this study. Metal-phenolic networks (MPNs) was employed to form a low coordination compound on C3N4, and calcined catalyst formed hollow structure with abundant and uniform Fe sites and surface folds. CN-FeC exhibited significant peroxidase-like activity and high substrate affinity. The homogeneous distribution of amorphous Fe elements on the C3N4 substrate provides more active sites, resulting in provided excellent catalytic activity to activate H2O2 to ·OH, 1O2 and O2·-. The established CN-FeC/TMB/H2O2 colorimetric system can detect AA in the concentration range of 5-40 µM, with the detection limits of 1.40 µM, respectively. It has good accuracy for the detection of vitamin C tablets, beverages. Taken together, this work shows that metal-phenolic networks can be an effective way to achieve efficient utilization of metal atoms and provides a promising idea for metal-phenolic networks in nanoparticle enzyme performance enhancement.


Assuntos
Antioxidantes , Nanopartículas , Peróxido de Hidrogênio/química , Peroxidase/química , Peroxidases/química , Nanopartículas/química , Colorimetria/métodos , Ferro
13.
Mater Today Bio ; 24: 100921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226017

RESUMO

Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)6-capped RGD (K6-(linker-RGD)3) and OGP (K6-linker-(YGFGG)2), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K6 and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K6-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc., were detailly characterized by various techniques (ellipsometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, water contact angle, scanning electronic microscopy and atomic force microscopy). Importantly, the RGD/OGP ratio can be well adjusted, which allowed optimizing the RGD/OGP ratio to endow significantly enhanced osteogenic activity of MC3T3-E1 cells through the Wnt/ß-catenin pathway, while also promoting cell adhesion, immune regulation, inhibiting osteoclast differentiation and oxidative stress reduction. In vivo, the optimized RGD/OGP coatings promoted bone regeneration and osseointegration around implants in rats with bone defects. In conclusion, rationally designed PC/Fe@K6-RGD/OGP coating integrated RGD and OGP bioactivities, providing a convenient approach to enhance bioinert implant surfaces for bone regeneration.

14.
Adv Healthc Mater ; 13(6): e2302787, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37988243

RESUMO

Esophageal cancer (EC) treatment via anti-angiogenic therapy faces challenges due to non-cytotoxicity and non-specific biodistribution of the anti-angiogenic agents. Hence, the quest for a synergistic treatment modality and a targeted delivery approach to effectively address EC has become imperative. In this study, an acid-responsive release nanosystem (Bev-IR820@FeIII TA) that involves the conjugation of bevacizumab, an anti-angiogenic monoclonal antibody, with TA and Fe3+ to form a metal-phenolic network, followed by loading with the near-infrared photothermal agent (IR820) to achieve combinational therapy, is designed. The construction of Bev-IR820@FeIII TA can be realized through a facile self-assembly process. The Bev-IR820@FeIII TA exhibits tumor-targeting capabilities and synergistic therapeutic effects, encompassing anti-angiogenic therapy, photothermal therapy (PTT), and ferroptosis therapy (FT). Bev-IR820@FeIII TA exhibits remarkable proficiency in delivering drugs to EC tissue through its pH-responsive release properties. Consequently, bevacizumab exerts its therapeutic effects by obstructing tumor angiogenesis, thereby impeding tumor growth. Meanwhile, PTT facilitates localized thermal ablation at the tumor site, directly eradicating EC cells. FT synergistically collaborates with PTT, giving rise to the formation of a reactive oxygen species (ROS) storm, subsequently culminating in the demise of EC cells. In summary, this amalgamated treatment modality carries substantial promise for synergistically impeding EC progression and showcases auspicious prospects for future EC treatment.


Assuntos
Neoplasias Esofágicas , Ferroptose , Humanos , Terapia Fototérmica , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Compostos Férricos , Distribuição Tecidual , Neoplasias Esofágicas/tratamento farmacológico
15.
Sci Total Environ ; 921: 170877, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360310

RESUMO

The recovery of metals from solid waste for use as heterogeneous catalysts to activate peroxymonosulfate (PMS) for organic wastewater treatment is a promising, environmentally friendly and economical strategy. Herein, we present a facile and versatile strategy for upcycling copper (Cu) from waste printed circuit boards (PCBs) to Cu oxides supported on a three-dimensional carbon framework (10PCBs-Cu-TA) with the aid of tannic acid (TA). Compared to the PCBs-Cu synthesized without TA, introducing TA into 10PCBs-Cu-TA reduced Cu leaching, enhanced crystallinity, promoted electron transfer, and increased the number of oxygen vacancies. Moreover, 10PCBs-Cu-TA exhibited superior catalytic activity in activating PMS for the degradation of reactive brilliant blue KN-R, exceeding the activity of 10Cu-TA prepared using commercial Cu(NO3)2·3H2O. This enhanced performance may be attributed to the higher specific surface area and oxygen vacancies of 10PCBs-Cu-TA. The 10PCBs-Cu-TA/PMS system also exhibited broad catalytic universality and adaptability to various contaminants and water matrices. Quenching experiments, electron paramagnetic resonance analysis, and electrochemical measurements indicated that radical and non-radical processes jointly contributed to KN-R degradation. The proposed strategy for upcycling Cu from waste PCBs into functional materials provides novel insights into the utilization of solid waste and the development of PMS activators.

16.
ACS Appl Mater Interfaces ; 16(8): 10158-10169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354064

RESUMO

Solar-driven seawater desalination has been considered an effective and sustainable solution to mitigate the global freshwater crisis. However, the substantial cost associated with photothermal materials for evaporator fabrication still hinders large-scale manufacturing for practical applications. Herein, we successfully obtained high yields of theabrownins (TB), which were oxidation polymerization products of polyphenols from waste and inferior tea leaves using a liquid-state fermentation strategy. Subsequently, a series of photothermal complexes were prepared based on the metal-phenolic networks assembled from TB and metal ions (Fe(III), Cu(II), Ni(II), and Zn(II)). Also, the screened TB@Fe(III) complexes were directly coated on a hydrophilic poly(vinylidene fluoride) (PVDF) membrane to construct the solar evaporation device (TB@Fe(III)@PVDF), which not only demonstrated superior light absorption property and notable hydrophilicity but also achieved a high water evaporation rate of 1.59 kg m-2 h-1 and a steam generation efficiency of 90% under 1 sun irradiation. More importantly, its long-term stability and exceptionally low production cost enabled an important step toward the possibility of large-scale practical applications. We believe that this study holds the potential to pave the way for the development of sustainable and cost-effective photothermal materials, offering new avenues for utilization of agriculture resource waste and solar-driven water remediation.

17.
ACS Appl Mater Interfaces ; 16(21): 27988-27997, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748900

RESUMO

Pickering emulsions stabilized by functional nanoparticles (NPs) have received considerable attention for improving the physical stability and biological function of NPs. Herein, hydrophobic polyphenols were chosen as phenolic ligands to form metal-phenolic network (MPN) coatings on NPs (e.g., silica, polystyrene) mediated by the sono-Fenton reaction. The MPN coatings modulated the surface wettability and charges of NPs and achieved emulsification behavior for preparing Pickering emulsions with pH responsiveness and oxidation resistance. A series of polyphenols, including resveratrol, rutin, naringin, and curcumin, were used to form MPN coatings on NPs, which served as stabilizers for the engineering of functionalized oil-in-water (O/W) Pickering emulsions. This work provides a new avenue for the use of hydrophobic polyphenols to modulate NP emulsifiers, which broadens the application of polyphenols for constructing Pickering emulsions with antioxidant properties.

18.
Adv Sci (Weinh) ; 11(18): e2307269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445899

RESUMO

Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.


Assuntos
Imunomodulação , Células-Tronco Mesenquimais , Osseointegração , Titânio , Osseointegração/efeitos dos fármacos , Animais , Titânio/química , Imunomodulação/efeitos dos fármacos , Taninos/farmacologia , Taninos/química , Propriedades de Superfície , Próteses e Implantes , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Estrôncio/química , Estrôncio/farmacologia , Modelos Animais , Ratos
19.
Biomaterials ; 304: 122396, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043464

RESUMO

As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Proteínas da Membrana Bacteriana Externa , Membrana Externa Bacteriana , Polifenóis , Metais , Antígenos de Neoplasias , Íons , Vacinas Bacterianas , Microambiente Tumoral
20.
Mater Today Bio ; 25: 101017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495914

RESUMO

The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA