Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 105(3): 1940-1958, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033339

RESUMO

One trend of the modern world is the search for new biologically active substances based on renewable resources. Milk proteins can be a solution for such purposes as they have been known for a long time as compounds that can be used for the manufacturing of multiple food and non-food products. Thus, the goal of the work was to investigate the parameters of Zn-bovine lactoferrin (bLTF) interactions, which enables the synthesis of Zn-rich protein complexes. Zinc-bLTF complexes can be used as food additives or wound-healing agents. Methodology of the study included bLTF characterization by sodium dodecyl sulfate-PAGE, MALDI-TOF, and MALDI-TOF/TOF mass spectrometry as well Zn-bLTF interactions by attenuated total reflection-Fourier-transform infrared, Raman spectroscopy, scanning and transmission microscopy, and zeta potential measurements. The obtained results revealed that the factors that affect Zn-bLTF interactions most significantly were found to be pH and ionic strength of the solution and, in particular, the concentration of Zn2+. These findings imply that these factors should be considered when aiming at the synthesis of Zn-bLTF metallocomplexes.


Assuntos
Lactoferrina , Zinco , Animais , Eletroforese em Gel de Poliacrilamida/veterinária , Lactoferrina/metabolismo , Proteínas do Leite/análise , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária , Zinco/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440733

RESUMO

Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Complexos de Coordenação/química , Flavonoides/química , Ferro/química , Animais , Quelantes/química , Quelantes/farmacologia , Heme/química , Humanos , Íons/química , Íons/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245108

RESUMO

Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal-protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of ß-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals.


Assuntos
Metais/metabolismo , Proteínas do Soro do Leite/metabolismo , Suplementos Nutricionais , Alimentos , Íons , Modelos Moleculares , Ligação Proteica , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/isolamento & purificação
4.
Nanomaterials (Basel) ; 12(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335741

RESUMO

The synthesis and characterization of water-soluble copolymers containing N,N-dimethylacrylamide (DMAM) and a vinylic monomer containing an Iridium(III), Ir(III), complex substituted with the quinoline-based unit 2-(pyridin-2-ylo)-6-styrene-4-phenylquinoline (VQPy) as ligand are reported. These copolymers were prepared through pre- or post-polymerization complexation of Ir(III) with the VQPy units. The first methodology led to copolymer P1 having fully complexed VQPy units, whereas the latter methodology allowed the preparation of terpolymers containing free and Ir(III)-complexed VQPy units (copolymer P2). The optical properties of the copolymers were studied in detail through UV-Vis and photoluminescence spectroscopy in aqueous solution. It is shown that the metal-to-ligand charge transfer (ΜLCT) emission is prevailing in the case of P1, regardless of pH. In contrast, in the case of terpolymer P2 the MLCT emission of the Ir(III) complex is combined with the pH-responsive emission of free VQPy units, leading to characteristic pH-responsive color changes under UV illumination in the acidic pH region.

5.
Polymers (Basel) ; 12(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322188

RESUMO

In this work, hybrid polymeric bis-tridentate iridium(III) complexes bearing derivatives of terpyridine (tpy) and 2,6-di(phenyl) pyridine as ligands were successfully synthesized and evaluated as red-light emitters. At first, the synthesis of small molecular bis-tridendate Ir(III) complexes bearing alkoxy-, methyl-, or hydroxy-functionalized terpyridines and a dihydroxyphenyl-pyridine moiety was accomplished. Molecular complexes bearing two polymerizable end-hydroxyl groups and methyl- or alkoxy-decorated terpyridines were copolymerized with difluorodiphenyl-sulphone under high temperature polyetherification conditions. Alternatively, the post-polymerization complexation of the terpyridine-iridium(III) monocomplexes onto the biphenyl-pyridine main chain homopolymer was explored. Both cases afforded solution-processable metallocomplex-polymers possessing the advantages of phosphorescent emitters in addition to high molecular weights and excellent film-forming ability via solution casting. The structural, optical, and electrochemical properties of the monomeric and polymeric heteroleptic iridium complexes were thoroughly investigated. The polymeric metallocomplexes were found to emit in the orange-red region (550-600 nm) with appropriate HOMO and LUMO levels to be used in conjunction with blue-emitting hosts. By varying the metal loading on the polymeric backbone, the emitter's specific emission maxima could be successfully tuned.

6.
Toxics ; 3(2): 170-186, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29056656

RESUMO

Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives "heavy" and "toxic" are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA