Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 229(Supplement_1): S25-S33, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37249267

RESUMO

BACKGROUND: Previous studies reported inconsistent findings regarding the association between respiratory syncytial virus (RSV) subgroup distribution and timing of RSV season. We aimed to further understand the association by conducting a global-level systematic analysis. METHODS: We compiled published data on RSV seasonality through a systematic literature review, and unpublished data shared by international collaborators. Using annual cumulative proportion (ACP) of RSV-positive cases, we defined RSV season onset and offset as ACP reaching 10% and 90%, respectively. Linear regression models accounting for meteorological factors were constructed to analyze the association of proportion of RSV-A with the corresponding RSV season onset and offset. RESULTS: We included 36 study sites from 20 countries, providing data for 179 study-years in 1995-2019. Globally, RSV subgroup distribution was not significantly associated with RSV season onset or offset globally, except for RSV season offset in the tropics in 1 model, possibly by chance. Models that included RSV subgroup distribution and meteorological factors explained only 2%-4% of the variations in timing of RSV season. CONCLUSIONS: Year-on-year variations in RSV season onset and offset are not well explained by RSV subgroup distribution or meteorological factors. Factors including population susceptibility, mobility, and viral interference should be examined in future studies.


Assuntos
Vírus Sincicial Respiratório Humano , Humanos , Modelos Lineares , Estações do Ano , Interferência Viral
2.
BMC Infect Dis ; 24(1): 1093, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358703

RESUMO

BACKGROUND: Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS: In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS: Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION: The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Estações do Ano , Filogenia , Epidemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
3.
Environ Res ; 245: 118039, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147919

RESUMO

RATIONALE: Air pollution and extreme temperature and humidity are risk factors for lung dysfunction, but their interactions are not clearly understood. OBJECTIVES: To assess the impact of exposure to air pollutants and meteorological factors on lung function, and the contribution of their interaction to the overall effect. METHODS: The peak expiratory flow rates of 135 participants were repeatedly measured during up to four visits. Two weeks before each visit, the concentrations of gaseous pollutants and 19 fine particle components, and the temperature and relative humidity, were continuously monitored in the community where they lived. A Bayesian Kernel machine regression model was used to explore the non-linear exposure-response relationships of the peak expiratory flow rate with pollutant exposure and meteorological factors, and their interactions. MEASUREMENTS AND MAIN RESULTS: Increased temperature and relative humidity could exacerbate pollutant-associated decline in the peak expiratory flow rate, although their associations with lung dysfunction disappeared after adjustment for pollutant exposure. For example, declines of peak expiratory flow rate associated with interquartile range increase of 3-day cadmium exposure were -0.03 and -0.07 units, when temperature was at 0.1 and 19.5 °C, respectively. Decreased temperature were associated with declines of peak expiratory flow rate after adjustment for pollutant exposure, and had interaction with pollutant exposure on lung dysfunction. CONCLUSIONS: High temperature, low temperature, and high humidity were all high-risk factors for lung dysfunction, and their interactions with pollutant levels contributed greatly to the overall effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Idoso , Umidade , Temperatura , Teorema de Bayes , Material Particulado/toxicidade , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão/química
4.
Environ Res ; 262(Pt 2): 119879, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243843

RESUMO

The airborne microbiome significantly influences human health and atmospheric processes within Earth's troposphere and is a crucial focus for scientific research. This study aimed to analyze the composition, diversity, distribution, and spatiotemporal characteristics of airborne microbes in Qatar's ambient air. Air samples were collected using a sampler from ten geographically or functionally distinct locations during a period of one year. Spatial and seasonal variations significantly impacted microbial concentrations, with the highest average concentrations observed at 514 ± 77 CFU/m3 for bacteria over the dry-hot summer season and 134 ± 31 CFU/m3 for fungi over the mild winter season. Bacterial concentrations were notably high in 80% of the locations during the dry-hot summer sampling period, while fungal concentrations peaked in 70% of the locations during winter. The microbial diversity analysis revealed several health-significant bacteria including the genera Chryseobacterium, Pseudomonas, Pantoea, Proteus, Myroides, Yersinia, Pasteurella, Ochrobactrum, Vibrio, and fungal strains relating to the genera Aspergillus, Rhizopus Fusarium, and Penicillium. Detailed biochemical and microscopic analyses were employed to identify culturable species. The strongest antibiotic resistance (ABR) was observed during the humid-hot summer season, with widespread resistance to Metronidazole. Health risk assessments based on these findings indicated potential risks associated with exposure to high concentrations of specific bioaerosols. This study provides essential baseline data on the natural background concentrations of bioaerosols in Qatar, offering insights for air quality assessments and forming a basis for public health policy recommendations, particularly in arid regions.

5.
Phytopathology ; 114(6): 1289-1294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330212

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the main diseases of wheat worldwide. Mianyang of Sichuan province in Southwest China is one of main regions for winter Pst inoculum production and spring epidemic and provides urediniospores for infecting wheat in the surrounding regions. Understanding the urediniospore dynamics is important to predict and manage stripe rust. In this study, spore trapping coupled with a TaqMan real-time quantitative PCR method was used to monitor airborne Pst urediniospores from December 2019 to December 2022 in Mianyang. Weather conditions (temperature, relative humidity, daily sunshine duration, and precipitation) were collected for the same period. These data were used to study the relationship of airborne urediniospore density with climatic conditions. The results showed that Pst urediniospores were captured all year round, and the annual peak of urediniospore densities occurred in the period from March to April in which the urediniospores accounted for the largest proportion of the annual total urediniospores. The density of urediniospores in the period of March to April was linearly related to the average sunshine duration of 20 days and average temperature of 15 days prior to the final day of a 7-day trapping period. This relationship needs to be tested in other regions where Pst can sporulate during the winter before it can be integrated with Pst infection conditions to predict rust development.


Assuntos
Doenças das Plantas , Puccinia , Esporos Fúngicos , Triticum , China , Doenças das Plantas/microbiologia , Triticum/microbiologia , Puccinia/fisiologia , Estações do Ano , Temperatura , Basidiomycota/fisiologia , Conceitos Meteorológicos
6.
Med Vet Entomol ; 38(3): 325-340, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38608184

RESUMO

Mansonia mosquito species are recognised as a significant vector of human pathogens, primarily transmitting the filarial nematode, Brugia malayi. In central Thailand, the three most prevalent Mansonia species are Mansonia annulifera, Mansonia indiana and Mansonia uniformis. This study explored the influence of seasonal changes on the phenotypic variation of these Mansonia species in central Thailand using the geometric morphometrics (GM). To ensure accurate species identification, we integrated GM techniques with DNA barcoding, examining distinctions in both phenotype and genotype among the species. The intraspecific genetic divergence ranged from 0.00% to 1.69%, whereas the interspecific genetic divergence ranged from 10.52% to 16.36%. The clear distinction between intra- and interspecific distances demonstrated the presence of a barcoding gap, confirming the successful differentiation of the three Mansonia mosquito species through DNA barcoding. Similarly, the interspecies GM assessment for classifying Mansonia species demonstrated a high degree of accuracy, with an overall performance of 98.12%. Exploring seasonal variation in the three Mansonia species revealed wing variations across different seasons, and pronounced variations appearing in the cool season. Regarding their association with meteorological factors, Ma. annulifera and Ma. uniformis showed significant positive correlations with temperature (p < 0.05), and Ma. uniformis also displayed a significant negative correlation with atmospheric pressure (p < 0.05). The insights from this study will deepen our understanding of the adaptive patterns of Mansonia mosquitoes in Thailand's central region, paving the way for enhanced disease surveillance related to these vectors.


Assuntos
Culicidae , Estações do Ano , Animais , Tailândia , Culicidae/anatomia & histologia , Culicidae/classificação , Masculino , Código de Barras de DNA Taxonômico , Feminino , Especificidade da Espécie
7.
BMC Public Health ; 24(1): 1333, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760740

RESUMO

BACKGROUND: Previous studies have shown the association between tuberculosis (TB) and meteorological factors/air pollutants. However, little information is available for people living with HIV/AIDS (PLWHA), who are highly susceptible to TB. METHOD: Data regarding TB cases in PLWHA from 2014 to2020 were collected from the HIV antiviral therapy cohort in Guangxi, China. Meteorological and air pollutants data for the same period were obtained from the China Meteorological Science Data Sharing Service Network and Department of Ecology and Environment of Guangxi. A distribution lag non-linear model (DLNM) was used to evaluate the effects of meteorological factors and air pollutant exposure on the risk of TB in PLWHA. RESULTS: A total of 2087 new or re-active TB cases were collected, which had a significant seasonal and periodic distribution. Compared with the median values, the maximum cumulative relative risk (RR) for TB in PLWHA was 0.663 (95% confidence interval [CI]: 0.507-0.866, lag 4 weeks) for a 5-unit increase in temperature, and 1.478 (95% CI: 1.116-1.957, lag 4 weeks) for a 2-unit increase in precipitation. However, neither wind speed nor PM10 had a significant cumulative lag effect. Extreme analysis demonstrated that the hot effect (RR = 0.638, 95%CI: 0.425-0.958, lag 4 weeks), the rainy effect (RR = 0.285, 95%CI: 0.135-0.599, lag 4 weeks), and the rainless effect (RR = 0.552, 95%CI: 0.322-0.947, lag 4 weeks) reduced the risk of TB. Furthermore, in the CD4(+) T cells < 200 cells/µL subgroup, temperature, precipitation, and PM10 had a significant hysteretic effect on TB incidence, while temperature and precipitation had a significant cumulative lag effect. However, these effects were not observed in the CD4(+) T cells ≥ 200 cells/µL subgroup. CONCLUSION: For PLWHA in subtropical Guangxi, temperature and precipitation had a significant cumulative effect on TB incidence among PLWHA, while air pollutants had little effect. Moreover, the influence of meteorological factors on the incidence of TB also depends on the immune status of PLWHA.


Assuntos
Poluentes Atmosféricos , Infecções por HIV , Conceitos Meteorológicos , Tuberculose , Humanos , China/epidemiologia , Incidência , Tuberculose/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Infecções por HIV/epidemiologia , Feminino , Masculino , Adulto , Síndrome da Imunodeficiência Adquirida/epidemiologia , Pessoa de Meia-Idade
8.
BMC Public Health ; 24(1): 1581, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867184

RESUMO

BACKGROUND: Acute otitis media (AOM) is a prevalent childhood acute illness, with 13.6 million pediatric office visits annually, often stemming from upper respiratory tract infections (URI) and affected by environmental factors like air pollution and cold seasons. METHODS: Herein, we made use of territory-wide hospitalization data to investigate the relationships between meteorological factors, air pollutants, influenza infection, and AOM for children observed from 1998 to 2019 in Hong Kong. Quasi-Poisson generalized additive model, combined with a distributed-lag non-linear model, was employed to examine the relationship between weekly AOM admissions in children and weekly influenza-like illness-positive (ILI +) rates, as well as air pollutants (i.e., oxidant gases, sulfur dioxide, and fine particulate matter), while accounting for meteorological variations. RESULTS: There were 21,224 hospital admissions due to AOM for children aged ≤ 15 years throughout a 22-year period. The cumulative adjusted relative risks (ARR) of AOM were 1.15 (95% CI, 1.04-1.28) and 1.07 (95% CI, 0.97-1.18) at the 95th percentile concentration of oxidant gases (65.9 ppm) and fine particulate matter (62.2 µg/m3) respectively, with reference set to their medians of concentration. The ARRs exhibited a monotone increasing trend for all-type and type-specific ILI + rates. Setting the reference to zero, the cumulative ARRs of AOM rose to 1.42 (95% CI, 1.29-1.56) at the 95th percentile of ILI + Total rate, and to 1.07 (95% CI, 1.01-1.14), 1.19 (95% CI, 1.11-1.27), and 1.22 (95% CI, 1.13-1.32) for ILI + A/H1N1, A/H3N2, and B, respectively. CONCLUSIONS: Our findings suggested that policy on air pollution control and influenza vaccination for children need to be implemented, which might have significant implications for preventing AOM in children.


Assuntos
Poluentes Atmosféricos , Hospitalização , Influenza Humana , Otite Média , Estações do Ano , Humanos , Otite Média/epidemiologia , Influenza Humana/epidemiologia , Hospitalização/estatística & dados numéricos , Pré-Escolar , Criança , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Lactente , Hong Kong/epidemiologia , Feminino , Masculino , Adolescente , Doença Aguda , Material Particulado/análise , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
9.
BMC Public Health ; 24(1): 2628, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333979

RESUMO

BACKGROUND: Mushroom poisoning is a significant food safety issue in Guizhou Province, China. Studies on this topic are essential for its prevention and control. We aimed to analyze the epidemiological characteristics of mushroom poisoning and study the correlation between its cases and meteorological factors in Guizhou Province. METHODS: We collected data on mushroom poisoning and meteorological factors in Guizhou Province in 2023. A descriptive analysis was conducted on the epidemiological features of mushroom poisoning and meteorological factors. We used Spearman correlation analysis and the generalized additive model to examine the relationship between meteorological factors and the number of mushroom poisoning cases. RESULTS: In 2023, mushroom poisoning cases in Guizhou Province were concentrated among individuals aged 20-59. Clinical symptoms were primarily gastrointestinal symptoms and occurrences peaked from June to October, mainly in the northeastern region of the province. Most incidents occurred in households. In 72 mushroom poisoning incidents where species were identified, 33 poisonous mushrooms were found. The number of mushroom poisoning cases in Guizhou Province was positively correlated with each meteorological factor(P < 0.05). The generalized additive model showed a significant nonlinear relationship between DGT, PRE, RHU, SSD, and the number of mushroom poisoning cases (P < 0.05). Interaction analysis showed that the risk of mushroom poisoning in Guizhou Province increased with the rising values of any two of these four meteorological factors. CONCLUSION: Mushroom poisoning incidents in Guizhou Province are characterized by high-risk groups, seasonality, and specific high-incidence regions and places. Public awareness for high-risk groups and early warnings for high-incidence regions and places should be strengthened every summer and fall. There is a correlation between meteorological factors and the number of mushroom poisoning cases, suggesting that these factors could serve as early warning indicators for the prevention and control of mushroom poisoning.


Assuntos
Intoxicação Alimentar por Cogumelos , Humanos , China/epidemiologia , Intoxicação Alimentar por Cogumelos/epidemiologia , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Adulto Jovem , Adolescente , Pré-Escolar , Conceitos Meteorológicos , Criança , Lactente , Idoso , Incidência , Modelos Estatísticos
10.
Artigo em Inglês | MEDLINE | ID: mdl-39369358

RESUMO

OBJECTIVES: The study aims to explore whether short-term exposure to meteorological factors has a potential association with the risk of diabetes mellitus (DM) mortality. METHODS: During the period 2015-2018, we collected daily data on meteorological factors and deaths of diabetic patients in Hefei. A total of 1101 diabetic deaths were recorded. We used structural equation modeling to initially explore the relationships among air pollutants, meteorological variables, and mortality, and generalized additive modeling (GAM) and distributional lag nonlinear modeling (DLNM) to explore the relationship between meteorological factors and the mortality risk of DM patients. We also stratified by age and gender. The mortality risk in diabetic patients was expressed by relative risks (RR) and 95% confidence intervals (CI) for both single and cumulative days. RESULTS: Single-day lagged results showed a high relative humidity (RH) (75th percentile, 83.71%), a fairly high average temperature (T mean) (95th percentile, 30.32 °C), and an extremely low diurnal temperature range (DTR) (5th percentile, 3.13 °C) were positively related to the mortality risk of DM. Stratified results showed that high and very high levels of T mean were significantly positively linked to the mortality risk of DM among females and the elderly, while very high levels of DTR were linked to the mortality risk in men and younger populations. CONCLUSION: In conclusion, this study found that short-duration exposure to quite high T mean, high RH, and very low DTR were significantly positively related to the mortality risk of DM patients. For women and older individuals, exposure to high and very high T mean environments should be minimized. Men and young adults should be aware of daily temperature changes.

11.
BMC Public Health ; 24(1): 36, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167033

RESUMO

BACKGROUND: Scrub typhus poses a substantial risk to human life and wellbeing as it is transmitted by vectors. Although the correlation between climate and vector-borne diseases has been investigated, the impact of climate on scrub typhus remains inadequately comprehended. The objective of this study is to investigate the influence of meteorological conditions on the occurrence of scrub typhus in Ganzhou City, Jiangxi Province.  METHODS: From January 1, 2008 to December 31, 2021, we gathered weekly records of scrub typhus prevalence alongside meteorological data in Ganzhou city. In order to investigate the correlation between meteorological factors and scrub typhus incidence, we utilized distributional lag nonlinear models and generalized additive models for our analysis. RESULTS: Between 2008 and 2021, a total of 5942 cases of scrub typhus were recorded in Ganzhou City. The number of females affected exceeded that of males, with a male-to-female ratio of 1:1.86. Based on the median values of these meteorological factors, the highest relative risk for scrub typhus occurrence was observed when the weekly average temperature reached 26 °C, the weekly average relative humidity was 75%, the weekly average sunshine duration lasted for 2 h, and the weekly mean wind speed measured 2 m/s. The respective relative risks for these factors were calculated as 3.816 (95% CI: 1.395-10.438), 1.107 (95% CI: 1.008-1.217), 2.063 (95% CI: 1.022-4.165), and 1.284 (95% CI: 1.01-1.632). Interaction analyses showed that the risk of scrub typhus infection in Ganzhou city escalates with higher weekly average temperature and sunshine duration. CONCLUSION: The findings of our investigation provide evidence of a correlation between environmental factors and the occurrence of scrub typhus. As a suggestion, utilizing environmental factors as early indicators could be recommended for initiating control measures and response strategies.


Assuntos
Tifo por Ácaros , Masculino , Humanos , Feminino , Tifo por Ácaros/epidemiologia , Incidência , Clima , Conceitos Meteorológicos , Temperatura , China/epidemiologia
12.
BMC Public Health ; 24(1): 494, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365650

RESUMO

BACKGROUND: Quantitative evidence on the impact of meteorological factors on influenza transmissibility across different virus types/subtypes is scarce, and no previous studies have reported the effect of hourly temperature variability (HTV) on influenza transmissibility. Herein, we explored the associations between meteorological factors and influenza transmissibility according to the influenza type and subtype in Guangzhou, a subtropical city in China. METHODS: We collected influenza surveillance and meteorological data of Guangzhou between October 2010 and December 2019. Influenza transmissibility was measured using the instantaneous effective reproductive number (Rt). A gamma regression with a log link combined with a distributed lag non-linear model was used to assess the associations of daily meteorological factors with Rt by influenza types/subtypes. RESULTS: The exposure-response relationship between ambient temperature and Rt was non-linear, with elevated transmissibility at low and high temperatures. Influenza transmissibility increased as HTV increased when HTV < around 4.5 °C. A non-linear association was observed between absolute humidity and Rt, with increased transmissibility at low absolute humidity and at around 19 g/m3. Relative humidity had a U-shaped association with influenza transmissibility. The associations between meteorological factors and influenza transmissibility varied according to the influenza type and subtype: elevated transmissibility was observed at high ambient temperatures for influenza A(H3N2), but not for influenza A(H1N1)pdm09; transmissibility of influenza A(H1N1)pdm09 increased as HTV increased when HTV < around 4.5 °C, but the transmissibility decreased with HTV when HTV < 2.5 °C and 3.0 °C for influenza A(H3N2) and B, respectively; positive association of Rt with absolute humidity was witnessed for influenza A(H3N2) even when absolute humidity was larger than 19 g/m3, which was different from that for influenza A(H1N1)pdm09 and influenza B. CONCLUSIONS: Temperature variability has an impact on influenza transmissibility. Ambient temperature, temperature variability, and humidity influence the transmissibility of different influenza types/subtypes discrepantly. Our findings have important implications for improving preparedness for influenza epidemics, especially under climate change conditions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Conceitos Meteorológicos , Temperatura , Umidade , China/epidemiologia
13.
BMC Public Health ; 24(1): 1363, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773497

RESUMO

BACKGROUND: Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS: Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS: The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS: Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.


Assuntos
Serviço Hospitalar de Emergência , Doenças Respiratórias , Humanos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Pequim/epidemiologia , Pré-Escolar , Adolescente , Lactente , Criança , Adulto Jovem , Doenças Respiratórias/epidemiologia , Temperatura , Fatores de Tempo , Recém-Nascido , Idoso de 80 Anos ou mais , Poluição do Ar/efeitos adversos , Visitas ao Pronto Socorro
14.
Ecotoxicol Environ Saf ; 272: 116060, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310825

RESUMO

The occurrence of hand, foot, and mouth disease (HFMD) is closely related to meteorological factors. However, location-specific characteristics, such as persistent air pollution, may increase the complexity of the impact of meteorological factors on HFMD, and studies across different areas and populations are largely lacking. In this study, a two-stage multisite time-series analysis was conducted using data from 16 cities in Shandong Province from 2015 to 2019. In the first stage, we obtained the cumulative exposure-response curves of meteorological factors and the number of HFMD cases for each city. In the second stage, we merged the estimations from the first stage and included city-specific air pollution variables to identify significant effect modifiers and how they modified the short-term relationship between HFMD and meteorological factors. High concentrations of air pollutants may reduce the risk effects of high average temperature on HFMD and lead to a distinct peak in the cumulative exposure-response curve, while lower concentrations may increase the risk effects of high relative humidity. Furthermore, the effects of average wind speed on HFMD were different at different levels of air pollution. The differences in modification effects between subgroups were mainly manifested in the diversity and quantity of significant modifiers. The modification effects of long-term air pollution levels on the relationship between sunshine hours and HFMD may vary significantly depending on geographical location. The people in age<3 and male groups were more susceptible to long-term air pollution. These findings contribute to a deepening understanding of the relationship between meteorological factors and HFMD and provide evidence for relevant public health decision-making.


Assuntos
Poluição do Ar , Doença de Mão, Pé e Boca , Humanos , Masculino , Pré-Escolar , Doença de Mão, Pé e Boca/epidemiologia , Dinâmica não Linear , Incidência , Temperatura , Poluição do Ar/efeitos adversos , China/epidemiologia , Conceitos Meteorológicos
15.
Int J Biometeorol ; 68(3): 401-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150020

RESUMO

In recent years, there has been a rapid increase in the application of machine learning methods about predicting the incidence of dengue fever. However, the predictive factors and models employed in different studies vary greatly. Hence, we conducted a systematic review to summarize machine learning methods and predictors in previous studies. We searched PubMed, ScienceDirect, and Web of Science databases for articles published up to July 2023. The selected papers included not only the forecast of dengue incidence but also machine learning methods. A total of 23 papers were included in this study. Predictive factors included meteorological factors (22, 95.7%), historical dengue data (14, 60.9%), environmental factors (4, 17.4%), socioeconomic factors (4, 17.4%), vector surveillance data (2, 8.7%), and internet search data (3, 13.0%). Among meteorological factors, temperature (20, 87.0%), rainfall (20, 87.0%), and relative humidity (14, 60.9%) were the most commonly used. We found that Support Vector Machine (SVM) (6, 26.1%), Long Short-Term Memory (LSTM) (5, 21.7%), Random Forest (RF) (4, 17.4%), Least Absolute Shrinkage and Selection Operator (LASSO) (2, 8.7%), ensemble model (2, 8.7%), and other models (4, 17.4%) were identified as the best models based on evaluation metrics used in each article. These results indicate that meteorological factors are important predictors that cannot be ignored and SVM and LSTM algorithms are the most commonly used models in dengue fever prediction with good predictive performance. This review will contribute to the development of more robust early dengue warning systems and promote the application of machine learning methods in predicting climate-related infectious diseases.


Assuntos
Dengue , Aprendizado de Máquina , Conceitos Meteorológicos , Dengue/epidemiologia , Humanos , Incidência , Previsões
16.
Int J Biometeorol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884798

RESUMO

Scarlet fever (SF) is an acute respiratory transmitted disease that primarily affects children. The influence of meteorological factors and air pollutants on SF in children has been proved, but the relevant evidence in Northwest China is still lacking. Based on the weekly reported cases of SF in children in Lanzhou, northwest China, from 2014 to 2018, we used geographical detectors, distributed lag nonlinear models (DLNM), and bivariate response models to explore the influence of meteorological factors and air pollutants with SF. It was found that ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), temperature, pressure, water vapor pressure and wind speed were significantly correlated with SF based on geographical detectors. With the median as reference, the influence of high temperature, low pressure and high pressure on SF has a risk effect (relative risk (RR) > 1), and under extreme conditions, the dangerous effect was still significant. High O3 had the strongest effect at a 6-week delay, with an RR of 5.43 (95%CI: 1.74,16.96). The risk effect of high SO2 was strongest in the week of exposure, and the maximum risk effect was 1.37 (95%CI: 1.08,1.73). The interactions showed synergistic effects between high temperatures and O3, high pressure and high SO2, high nitrogen dioxide (NO2) and high particulate matter with diameter of less than 10 µm (PM10), respectively. In conclusion, high temperature, pressure, high O3 and SO2 were the most important factors affecting the occurrence of SF in children, which will provide theoretical support for follow-up research and disease prevention policy formulation.

17.
Int J Biometeorol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177805

RESUMO

Previous epidemiological studies have reported a short-term association between ambient temperature and suicide risk. To gain a clearer understanding of this association, it is essential to differentiate the risk factors for intentional self-harm (ISH) from those specifically associated with suicide deaths. Therefore, this study aims to examine whether the association between daily temperature and ISH or suicide deaths differs by age and sex. Between 2014 and 2019, cases of emergency room visits related to ISH and suicide deaths in Seoul were identified. A time-stratified case-crossover design was used to adjust for temporal trends and seasonal variation. A distributed lag nonlinear model was used to analyze the nonlinear and time-delayed effect of ambient temperature on ISH and suicide deaths. Positive associations were observed between temperature and both ISH and suicide deaths. For ISH, the relative risk (RR) was high at 1.17 (95% confidence interval (CI): 1.03, 1.34) for a temperature of 25.7 °C compared with 14.8 °C. The RR for suicide death was higher than those for ISH, at 1.43 (95% CI: 1.03, 2.00) for a temperature of 33.7 °C. These associations varied by age and sex, with males and females aged 35-64 years showing increased susceptibility to suicide deaths. This study provides detailed evidence that unusually high temperatures, both anomalous and out of season, may trigger suicidal behaviors, including both ISH and suicide deaths.

18.
Int J Environ Health Res ; 34(9): 3173-3187, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38153391

RESUMO

Existing evidence suggested that the risk of tuberculosis (TB) infection was associated to the variations in temperature and PM2.5. A total of 9,111 cases of TB were reported in Ningxia Hui Autonomous Region, China from 2013 to 2015 on a daily basis, and 57.2% of them were male. The TB risk was more prominent for a lower temperature in males (RR of 1.724, 95% CI: 1.241, 2.394), the aged over 64 years (RR of 2.241, 95% CI: 1.554, 3.231), and the high mobility occupation subpopulation (RR of 2.758, 95% CI: 1.745, 4.359). High concentration of PM2.5 showed a short-term effect and was only associated with an increased risk in the early stages of exposure for the female, and aged 36-64 years group. There were 15.06% (1370 cases) of cases of TB may be attributable to the temperature, and 2.94% (268 cases) may be attributable to the increase of PM2.5 exposures. Low temperatures may be associated with significantly increase in the risk of TB, and high PM2.5 concentrations have a short-term association on increasing the risk of TB. Strengthening the monitoring and regular prevention and control of high risk groups will provide scientific guidance to reduce the incidence of TB.


Assuntos
Poluentes Atmosféricos , Material Particulado , Temperatura , Tuberculose , China/epidemiologia , Pessoa de Meia-Idade , Humanos , Material Particulado/análise , Adulto , Feminino , Masculino , Tuberculose/epidemiologia , Idoso , Adulto Jovem , Poluentes Atmosféricos/análise , Adolescente , Exposição Ambiental/efeitos adversos , Criança , Incidência , Pré-Escolar , Poluição do Ar/análise , Poluição do Ar/efeitos adversos
19.
Environ Monit Assess ; 196(7): 658, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916763

RESUMO

Based on ozone (O3) monitoring data for Xiangtan and meteorological observation data for 2020-2022, we examined ozone pollution characteristics and the effects of meteorological factors on daily maximum 8-h average ozone (O3-8h) concentrations in Xiangtan. Thus, we observed significant increases as well as notable seasonal variations in O3-8h concentrations in Xiangtan during the period considered. The ozone and temperature change response slope (KO3-T) indicated that local emissions had no significant effect on O3-8h generation. Further, average O3-8h concentration and maximum temperature (Tmax) values showed a polynomial distribution. Specifically, at Tmax < 27 °C, it increased almost linearly with increasing temperature, and at Tmax between 27 and 37 °C, it showed an upward curvilinear trend as temperature increased, but at a much lower rate. Then, at Tmax > 37 °C, it decreased with increasing temperature. With respect to relative humidity (RH), the average O3-8h concentration primarily exceeded the standard value when RH varied in the range of 45-65%, which is the key humidity range for O3 pollution, and the inflection point for the correlation curve between O3-8h concentration and RH appeared at ~55%. Furthermore, at wind speeds (WSs) below 1.5 m∙s-1, O3-8h concentration increased rapidly, and at WSs in the 1.5-2 m∙s-1 range, it increased at a much faster rate. However, at WSs > 2 m∙s-1, it decreased slowly with increasing WS. O3-8h concentration also showed the tendency to exceed the standard value when the dominant wind directions in Xiangtan were easterly or southeasterly.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Conceitos Meteorológicos , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , China , Temperatura , Vento
20.
Environ Monit Assess ; 196(6): 533, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727749

RESUMO

The Indo-Gangetic Plains (IGP) of the Indian subcontinent during winters experience widespread fog episodes. The low visibility is not only attributed to meteorological conditions but also to the increased pollution levels in the region. The study was carried out for Tier 1 and Tier II cities of the IGP of India, including Kolkata, Amritsar, Patiala, Hisar, Delhi, Patna, and Lucknow. This work analyzes data from 1990 to 2023 (33 years) employing the Mann-Kendall-Theil-Sen slope to determine the trends in fog occurrences and the relation between fog and meteorological parameters using multiple linear regressions. Furthermore, identifying the most relevant fog (visibility)-impacting factors from a set of both meteorological factors and air pollutants using step-wise regression. All cities indicated trend in the number of foggy days except for Kolkata. The multiple regression analysis reveals relatively low associations between fog occurrences and meteorological factors (30 to 59%), although the association was stronger when air pollution levels were considered (60 to 91%). Relative humidity, PM2.5, and PM10 have the most influence on fog formation. The study provides comprehensive insights into fog trends by incorporating meteorological data and air pollution analysis. The findings highlight the significance of acknowledging meteorological and pollution factors to understand and mitigate the impacts of reduced visibility. Hence, this information can guide policymakers, urban planners, and environmental management agencies in developing effective strategies to manage fog-related risks and improve air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Tempo (Meteorologia) , Poluentes Atmosféricos/análise , Índia , Poluição do Ar/estatística & dados numéricos , Smog , Conceitos Meteorológicos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA