RESUMO
A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H2, H2, N2, CO2, CH4) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H2/N2 ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al2O3 catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane.
Assuntos
Ouro/química , Hidrogênio/química , Paládio/química , Metano/química , Vapor , Propriedades de SuperfícieRESUMO
Membrane technology is recognized as a scientiï¬c sector of multidisciplinary interest.[...].
Assuntos
Membranas Artificiais , CatáliseRESUMO
As energy demand continues to rise and the global population steadily grows, there is a growing interest in exploring alternative, clean, and renewable energy sources. The search for alternatives, such as green hydrogen, as both a fuel and an industrial feedstock, is intensifying. Methane steam reforming (MSR) has long been considered a primary method for hydrogen production, despite its numerous advantages, the activity and stability of the conventional Ni catalysts are major concerns due to carbon formation and metal sintering at high temperatures, posing significant drawbacks to the process. In recent years, significant attention has been given to bimetallic catalysts as a potential solution to overcome the challenges associated with methane steam reforming. Thus, this review focuses on the recent advancements in bimetallic catalysts for hydrogen production through methane steam reforming. The review explores various aspects including reactor type, catalyst selection, and the impact of different operating parameters such as reaction temperature, pressure, feed composition, reactor configuration, and feed and sweep gas flow rates. The analysis and discussion revolve around key performance indicators such as methane conversion, hydrogen recovery, and hydrogen yield.
RESUMO
In view of largely available renewable electricity as a green future resource, here we report the electrification of a Rh/Al2O3 washcoated SiSiC foam for methane steam reforming (MSR). We show that, thanks to the suitable bulk resistivity of the SiSiC foam, its direct Joule heating up to relevant temperatures is feasible; the interconnected geometry greatly reduces heat and mass transfer limitations, which results in a highly active and energy efficient system for low-carbon H2 production. The foam-based electrified MSR (eMSR) system showed almost full methane conversion above 700°C and methane conversions approaching equilibrium were obtained in a range of conditions. Energy efficiency as high as 61% and specific power consumption as low as 2.0 kWh/ N m H 2 3 were measured at 650°C, at gas hourly space velocity (GHSV) of 150,000 cm3/h/gcat. When driven by renewable electricity, the proposed reactor configuration promises a high potential to address the decarbonization challenge in the near-term future.
RESUMO
In this novel conceptual fuel cell vehicle (FCV), an on-board CH4 steam reforming (MSR) membrane reformer (MR) is considered to generate pure H2 for supplying a Fuel Cell (FC) system, as an alternative to the conventional automobile engines. Two on-board tanks are forecast to store CH4 and water, useful for feeding both a combustion chamber (designed to provide the heat required by the system) and a multi tubes Pd-Ag MR useful to generate pure H2 via methane steam reforming (MSR) reaction. The pure H2 stream is hence supplied to the FC. The flue gas stream coming out from the combustion chamber is used to preheat the MR feed stream by two heat exchangers and one evaporator. Then, this theoretical work demonstrates by a 1-D model the feasibility of the MR based system in order to generate 5 kg/day of pure H2 required by the FC system for cruising a vehicle for around 500 km. The calculated CH4 and water consumptions were 50 and 70 kg, respectively, per 1 kg of pure H2. The on-board MR based FCV presents lower CO2 emission rates than a conventional gasoline-powered vehicle, also resulting in a more environmentally friendly solution.
RESUMO
This work focuses on the development and implementation of an integrated process design and control framework for a membrane-based hydrogen production system based on low temperature methane steam reforming. Several alternative flowsheet configurations consisted of either integrated membrane reactor modules or successive reactor and membrane separation modules are designed and assessed by considering economic and controller dynamic performance criteria simultaneously. The design problem is expressed as a non-linear dynamic optimization problem incorporating a nonlinear dynamic model for the process system and a linear model predictive controller aiming to maintain the process targets despite the effect of disturbances. The large dimensionality of the disturbance space is effectively addressed by focusing on disturbances along the direction that causes the maximum process variability revealed by the analysis of local sensitivity information for the process system. Design results from a multi-objective optimization study, where only the annualized equipment and operational costs are minimized, are used as reference case in order to evaluate the proposed design framework. Optimization results demonstrate the controller's ability to track the imposed setpoint changes and alleviate the effects of multiple simultaneous disturbances. Also, significant economic improvements are observed by the implementation of the integrated design and control framework compared to the traditional design methodology, where process and controller design are performed sequentially.
RESUMO
Membrane gas separation is a prospective technology for hydrogen separation from various refinery and petrochemical process streams. To improve efficiency of gas separation, a novel hybrid membrane consisting of nanodiamonds and P84 copolyimide is developed. The particularities of the hybrid membrane structure, physicochemical, and gas transport properties were studied by comparison with that of pure P84 membrane. The gas permeability of H2, CO2, and CH4 through the hybrid membrane is lower than through the unmodified membrane, whereas ideal selectivity in separation of H2/CO2, H2/CH4, and CO2/CH4 gas pairs is higher for the hybrid membrane. Correlation analysis of diffusion and solubility coefficients confirms the reliability of the gas permeability results. The position of P84/ND membrane is among the most selective membranes on the Robeson diagram for H2/CH4 gas pair.
RESUMO
Efficient capture and recycling of CO2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl2O4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.
RESUMO
Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.
RESUMO
Ni nanoparticles supported on ZrO2 are a prototypical system for reforming catalysis converting methane to synthesis gas. Herein, we examine this catalyst on a fundamental level using a 2-fold approach employing industrial-grade catalysts as well as surface science based model catalysts. In both cases we examine the atomic (HRTEM/XRD/LEED) and electronic (XPS) structure, as well as the adsorption properties (FTIR/PM-IRAS), with emphasis on in situ/operando studies under atmospheric pressure conditions. For technological Ni-ZrO2 the rather large Ni nanoparticles (about 20 nm diameter) were evenly distributed over the monoclinic zirconia support. In situ FTIR spectroscopy and ex situ XRD revealed that even upon H2 exposure at 673 K no full reduction of the nickel surface was achieved. CO adsorbed reversibly on metallic and oxidic Ni sites but no CO dissociation was observed at room temperature, most likely because the Ni particle edges/steps comprised Ni oxide. CO desorption temperatures were in line with single crystal data, due to the large size of the nanoparticles. During methane dry reforming at 873 K carbon species were deposited on the Ni surface within the first 3 h but the CH4 and CO2 conversion hardly changed even during 24 h. Post reaction TEM and TPO suggest the formation of graphitic and whisker-type carbon that do not significantly block the Ni surface but rather physically block the tube reactor. Reverse water gas shift decreased the H2/CO ratio. Operando studies of methane steam reforming, simultaneously recording FTIR and MS data, detected activated CH4 (CH3 and CH2), activated water (OH), as well as different bidentate (bi)carbonate species, with the latter being involved in the water gas shift side reaction. Surface science Ni-ZrO2 model catalysts were prepared by first growing an ultrathin "trilayer" (O-Zr-O) ZrO2 support on an Pd3Zr alloy substrate, and subsequently depositing Ni, with the process being monitored by XPS and LEED. Apart from the trilayer oxide, there is a small fraction of ZrO2 clusters with more bulk-like properties. When CO was adsorbed on the (fully metallic) Ni particles at pressures up to 100 mbar, both PM-IRAS and XPS indicated CO dissociation around room temperature and blocking of the Ni surface by carbon (note that on the partially oxidized technological Ni particles, CO dissociation was absent). The Ni nanoparticles were stable up to 550 K but annealing to higher temperatures induced Ni migration through the ultrathin ZrO2 support into the Pd3Zr alloy. Both approaches have their benefits and limitations but enable us to address specific questions on a molecular level.