Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731528

RESUMO

Small-pore zeolites catalyze the methanol-to-olefins (MTO) reaction via a dual-cycle mechanism, encompassing both olefin- and aromatic-based cycles. Zeolite topology is crucial in determining both the catalytic pathway and the product selectivity of the MTO reaction. Herein, we investigate the mechanistic influence of MCM-35 zeolite on the MTO process. The structural properties of the as-synthesized MCM-35 catalyst, including its confined cages (6.19 Å), were characterized, confirming them as the catalytic centers. Then, the MTO reactions were systematically performed and investigated over a MCM-35 catalyst. Feeding pure methanol to the reactor yielded minimal MTO activity despite the formation of some aromatic species within the zeolite. The results suggest that the aromatic-based cycle is entirely suppressed in MCM-35, preventing the simultaneous occurrence of the olefin-based cycle. However, cofeeding a small amount of propene in methanol can obviously enhance the methanol conversion under the same studied reaction conditions. Thus, the exclusive operation of the olefin-based cycle in the MTO reaction, independent of the aromatic-based cycle, was demonstrated in MCM-35 zeolite.

2.
Chemistry ; 29(14): e202203095, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478597

RESUMO

The traditional hydrothermal synthesis strategy of ZSM-5 zeolite is energy-consumption accompanying by pollution issues. Herein, phosphorus-modified layered ZSM-5 zeolites (PZ) were obtained by one-pot synthesis under solvent-free conditions. The synthesized samples were fully characterized by XRD, SEM, BET, NH3 -TPD and FTIR. The effect of phosphorus addition on the morphology and catalytic activity of ZSM-5 was investigated. The results showed that phosphorus-modified ZSM-5 zeolites exhibited higher light olefin (ethylene and propylene) selectivity (above 50 %) and longer catalytic lifetime (33 h) in methanol to olefin (MTO) reaction when the weight hourly space velocity was 4 h-1 . Phosphorus-modified ZSM-5 zeolite synthesized by in situ solvent-free method, which not only reduced the discharge of sewage but also showed a simple method to realize the introduction of phosphorous species, which provided a new idea for phosphorus modification of ZSM-5 zeolite.

3.
Angew Chem Int Ed Engl ; 61(41): e202207777, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929758

RESUMO

Ketene (CH2 =C=O) has been postulated as a key intermediate for the first olefin production in the zeolite-catalyzed chemistry of methanol-to-olefins (MTO) and syngas-to-olefins (STO) processes. The reaction mechanism remains elusive, because the short-lived ethenone ketene and its derivatives are difficult to detect, which is further complicated by the low expected ketene concentration. We report on the experimental detection of methylketene (CH3 -CH=C=O) formed by the methylation of ketene on HZSM-5 via operando synchrotron photoelectron photoion coincidence (PEPICO) spectroscopy. Ketene is produced in situ from methyl acetate. The observation of methylketene as the ethylene precursor evidences a computationally predicted ketene-to-ethylene route proceeding via a methylketene intermediate followed by decarbonylation.

4.
Chemistry ; 27(22): 6719-6731, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33347673

RESUMO

The dynamics of the retained species on ZSM-5 and SAPO-18 catalysts are studied by using a combination of temperature-programmed desorption/oxidation, ex situ analysis, and in situ FTIR spectroscopic measurements over the entire conversion range, using fixed-bed and spectroscopic cell reactors, in continuous and discontinuous mode. The results point to the appropriateness of the combined methodologies to track the interconversion of active into deactivating species. A statistically relevant (supported by linear regression and multivariate analysis) association of the observations is found by using the different complementary methodologies. The kinetics of this interconversion depends on the initial conversion (tuned by acidity and space time) and microporous topology, and involve: (i) in the ZSM-5 catalysts, the diffusion of monocyclic aromatics toward the exterior of the zeolite to form coke, and (ii) in the SAPO-18 catalysts, the obstruction of the cavities by aromatics that grow into tetracyclic aromatic islands.

5.
Chemistry ; 21(48): 17324-35, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26463581

RESUMO

The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results.

6.
J Mol Model ; 30(8): 285, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060819

RESUMO

CONTEXT: The mechanisms for the formation of the first C - C bond and lower olefins on methanol to olefins (MTO) conversion on H-ZSM-5 had been focused in dispute. In this paper, density functional theory has been used to study the reaction mechanisms of methanol to olefins on ZSM-5. The configurations of reactants, intermediates, products and transition state of the numerous reactions involved in such a process have been optimized, as well as the elementary reactions related to these configurations were determined by the calculation of corresponding activation energy barriers and reaction heats. Here, two different kinds of the mechanisms were proposed for the formation of dimethyl ether (DME), one involving an associative interaction of two methanol molecules with the zeolite Brønsted acid sites and the other occurring via a surface methoxy species and a methanol molecule. A critical intermediate of the methoxy methyl cation was theoretically verified by the reaction of the methoxy species and dimethyl ether. Besides, it was found that the first intermediates containing a C - C bond were 1,2-dimethoxyethane and 2-methoxy-ethanolare, in which the former was formed from methoxy species with dimethyl ether and the latter was formed from methanol by onium ions((CH3)2O+CH2CH2OCH3), respectively. For the whole reaction mechanism, the results in this paper indicated that the ethene formation is more favorable than propylene formation due to the low activation energy barrier for ethene formation (123.49 vs. 162.09 kJ.mol-1). From these calculations, it would be concluded that ethene is the first alkene product that induces the occurrence of the hydrocarbon pool mechanism. METHODS: All the periodic density function theory (DFT) calculations were performed by the Vienna Ab Initio Simulation package (VASP). The interaction between nucleus and valence electron was described using the pseudopotentials found in the projector augmented wave (PAW) method. PBE-D3 was used in the whole DFT calculations and CI-NEB was used to locate transition state.

7.
ACS Appl Mater Interfaces ; 16(11): 14308-14320, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456610

RESUMO

It is well known that low-silica SAPO-34, with an extra porosity (meso- and/or macropores) system, affords excellent catalytic performance in the methanol-to-olefins (MTO) reaction, while the direct synthesis of low-silica SAPO-34 with a hierarchical structure is difficult to achieve, principally because the crystal impurities are usually formed under a low silica content in a gel precursor. Herein, low-silica SAPO-34 nanocrystals were successfully fabricated for the first time by constructing an isomorphous core-shell structure in an epitaxial growth manner. In which, low-silica, ultrasmall nanosquare-shaped SAPO-34 crystals with the same growth orientation along the (100) crystal plane compactly grow on the monocrystal SAPO-34 cores. Crucially, the external surface acid properties of the core SAPO-34 with the Si-rich outer layer are effectively modified by the low-silica SAPO-34 shell. Furthermore, the growth process and Si-substitution mechanism of the shell zeolite were comprehensively investigated. It was found that with the prolonged crystallization time, more and more coordinated Si(4Al) and Si(3Al) structures via two substitution mechanisms (SM2 and SM3) are generated in the nanocrystalline SAPO-34 shell, which endow moderate acidity of the core-shell SAPO-34. Compared to the uncoated SAPO-34, the core-shell SAPO-34 performs a longer lifespan and a higher average selectivity of light olefins (ethylene plus propylene) when applied to the MTO reaction, which is attributed to the positive effects of the luxuriant interstitial pores offering a fast diffusion channel and the moderate acid density depressing the hydrogen transfer reaction of light olefins. This work provides new insights into the fabrication of low-silica SAPO-34 nanocrystals, which are based on the rational design of the isomorphous core-shell zeolite.

8.
ACS Appl Mater Interfaces ; 16(1): 1179-1186, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157244

RESUMO

Recently, methanol-to-olefins (MTO) technology has been widely used. The development of new adsorbents to separate MTO products and obtain high-purity ethylene (C2H4) and propylene (C3H6) has become an urgent task. Herein, an exceptionally highly water-stable metal-organic framework (MOF), [Cu3(OH)2(Me2BPZ)2]·(solvent)x (1) (H2Me2BPZ = 3,3'-dimethyl-1H,1'H-4,4'-bipyrazole) with hexagonal pores, has been elaborately designed and constructed. After being soaked in water for 7 days, it still maintains its structure, and the uptake of N2 at 77 K is unchanged. The adsorption capacity of C3H6 can reach 138 cm3 g-1, while the uptake of C2H4 is only 52 cm3 g-1 at 298 K and 1 bar. The dynamic breakthrough experiments show that the mixture of C3H6/C2H4 (50/50, v/v) can be efficiently separated in one step. High-purity C2H4 and C3H6 can be obtained through an adsorption and desorption cycle and the yields of C2H4 (purity ≥ 99.95%) and C3H6 (purity ≥ 99%) are 84 and 48 L kg-1, respectively. Surprisingly, when the flow rate is increased, the separation performance has no obvious change. Additionally, humidity has no effect on the separation performance. Finally, theoretical simulations indicate that there are stronger interactions between the C3H6 molecule and the framework, which are beneficial to capturing C3H6 over C2H4.

9.
Natl Sci Rev ; 10(9): nwad120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565191

RESUMO

The successful development and application in industry of methanol-to-olefins (MTO) process brought about an innovative and efficient route for olefin production via non-petrochemical resources and also attracted attention of C1 chemistry and zeolite catalysis. Molecular sieve catalysts with diversified microenvironments embedding unique channel/cavity structure and acid properties, exhibit demonstrable features and advantages in the shape-selective catalysis of MTO. Especially, shape-selective catalysis over 8-MR and cavity-type zeolites with acidic supercage environment and narrow pore opening manifested special host-guest interaction between the zeolite catalyst and guest reactants, intermediates and products. This caused great differences in product distribution, catalyst deactivation and molecular diffusion, revealing the cavity-controlled methanol conversion over 8-MR and cavity-type zeolite catalyst. Furthermore, the dynamic and complicated cross-talk behaviors of catalyst material (coke)-reaction-diffusion over these types of zeolites determines the catalytic performance of the methanol conversion. In this review, we shed light on the cavity-controlled principle in the MTO reaction including cavity-controlled active intermediates formation, cavity-controlled reaction routes with the involvement of these intermediates in the complex reaction network, cavity-controlled catalyst deactivation and cavity-controlled diffusion. All these were exhibited by the MTO reaction performances and product selectivity over 8-MR and cavity-type zeolite catalysts. Advanced strategies inspired by the cavity-controlled principle were developed, providing great promise for the optimization and precise control of MTO process.

10.
Comb Chem High Throughput Screen ; 24(4): 559-569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819228

RESUMO

AIMS AND OBJECTIVE: In this work, the performance of a sodalite membrane reactor (MR) in the conversion of methanol to olefins (MTO process) was evaluated for ethylene and propylene production with in situ steam removal using 3-dimensional CFD (computational fluid dynamic) technique. METHODS: Numerical simulation was performed using the commercial CFD package COMSOL Multiphysics 5.3. The finite element method was used to solve the governing equations in the 3- dimensional CFD model for the present work. In the sodalite MR model, a commercial SAPO-34 catalyst in the reaction zone was considered. The influence of key operation parameters, including pressure and temperature on methanol conversion, water recovery, and yields of ethylene, propylene, and water was studied to evaluate the performance of sodalite MR. RESULTS: The local information of component concentration for methanol, ethylene, propylene, and water was obtained by the proposed CFD model. Literature data were applied to validate model results, and a good agreement was attained between the experimental data and predicted results using CFD model. Permeation flux through the sodalite membrane was increased by an increase of reaction temperature, which led to the enhancement of water stream recovered in the permeate side. CONCLUSION: The CFD modeling results showed that the sodalite MR in the MTO process had higher performance in methanol conversion compared to the fixed-bed reactor (methanol conversion of 97% and 89% at 733 K for sodalite MR and fixed-bed reactor, respectively).


Assuntos
Alcenos/síntese química , Etilenos/síntese química , Metanol/química , Zeolitas/química , Catálise , Simulação por Computador , Temperatura Alta , Membranas Artificiais , Modelos Químicos , Vapor , Propriedades de Superfície
11.
Comb Chem High Throughput Screen ; 24(4): 485-489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32691709

RESUMO

In the present study, SAPO-34 particles were synthesized using hydrothermal (HT) and dry gel (DG) conversion methods in the presence of diethyl amine (DEA) as an organic structure directing agent (SDA). Carbon nanotubes (CNT) were used as a hard template in the synthesis procedure to introduce transport pores into the structures of the synthesized samples. The synthesized samples were characterized with different methods to reveal the effects of synthesis method and using hard template on their structure and catalytic performance in methanol to olefin reaction (MTO). DG conversion method results in smaller particle size in comparison with hydrothermal method, resulting in enhancing catalytic performance. On the other side, using CNT in the synthesis procedure with DG method results in more reduction in particle size and formation of hierarchical structure, which drastically improves catalytic performance.


Assuntos
Alcenos/síntese química , Metanol/química , Zeolitas/química , Catálise , Dietilaminas/química , Cinética , Nanotubos de Carbono/química , Tamanho da Partícula , Porosidade
12.
Comb Chem High Throughput Screen ; 24(4): 521-533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32342811

RESUMO

INTRODUCTION: SAPO-34/AlMCM-41, as a hierarchical nanocomposite molecular sieve was prepared by sequential hydrothermal and dry-gel methods studied for catalytic conversion of methanol to light olefins. Pure AlMCM-41, SAPO-34, and their physical mixture were also produced and catalytically compared. Physicochemical properties of materials were mainly investigated using XRD, N2 isothermal adsorption-desorption, FESEM, FT-IR, NH3-TPD, and TG/DTG/DTA techniques. METHODS: Micro-meso hierarchy of prepared composite was demonstrated by XRD and BET analyses. Catalytic performance of materials illustrated that the methanol conversion of the prepared composite was about 98% for 120 min, showing a higher activity than the other catalysts. The initial reaction selectivity to light olefins of the composite was also comparable with those for the other catalysts. Furthermore, the results revealed that SAPO-34/AlMCM-41 preparation decreased the concentration and strength of active acid sites of the catalyst which could beneficially affect the deposition of heavy molecular products on the catalyst. However, as observed, the prepared composite was deactivated in olefins production faster than pure SAPO-34. RESULTS: The small mean pore diameter of composite could be mainly responsible for its pore blockage and higher deactivation rate. Meanwhile, since the SAPO-34 prepared by dry-gel method had inherently high mesoporosity, the AlMCM-41 introduction did not promote the molecular diffusion in the composite structure. CONCLUSION: The coke content was found 15.5% for deactivated composite smaller than that for the SAPO- 34 catalyst which could be due to the pore blockage and deactivation of the composite in a shorter period.


Assuntos
Alcenos/síntese química , Metanol/química , Nanocompostos/química , Zeolitas/química , Adsorção , Amônia/química , Catálise , Porosidade , Relação Estrutura-Atividade
13.
Comb Chem High Throughput Screen ; 24(4): 534-545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32342812

RESUMO

AIM AND OBJECTIVE: The research focuses on recent progress in the production of light olefins. Hence, as the common catalyst of the reaction (SAPO-34) deactivates quickly because of coke formation, we reorganized the mechanism combining SAPO-34 with a natural zeolite in order to delay the deactivation time. MATERIALS AND METHODS: The synthesis of nanocomposite catalyst was conducted hydrothermally using experimental design. Firstly, Clinoptilolite was modified using nitric acid in order to achieve nano-scaled material. Then, the initial gel of the SAPO-34 was prepared using DEA, aluminum isopropoxide, phosphoric acid and TEOS as the organic template, sources of Aluminum, Phosphor, and Silicate, respectively. Finally, the modified zeolite was combined with SAPO-34's gel. RESULTS: 20 different catalysts due to D-Optimal design were synthesized and the nanocomposite with 50 weight percent of SAPO-34, 4 hours Crystallization and early Clinoptilolite precipitation showed the highest relative crystallinity, partly high BET surface area and hierarchical structure. CONCLUSION: Different analyses illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to the low price of Clinoptilolite, the new catalyst renders the process as economical. Using this composite, according to the formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as the deactivation time was improved.


Assuntos
Alcenos/síntese química , Etilenos/síntese química , Metanol/química , Nanocompostos/química , Zeolitas/química , Catálise , Cristalização , Ácido Nítrico/química , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície
14.
Proc Combust Inst ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33013234

RESUMO

Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.

15.
Adv Mater ; 31(50): e1902181, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31496008

RESUMO

Methanol conversion to olefins, as an important reaction in C1 chemistry, provides an alternative platform for producing basic chemicals from nonpetroleum resources such as natural gas and coal. Methanol-to-olefin (MTO) catalysis is one of the critical constraints for the process development, determining the reactor design, and the profitability of the process. After the construction and commissioning of the world's first MTO plant by Dalian Institute of Chemical Physics, based on high-efficiency catalyst and fluidization technology in 2010, more attention has been attracted for a deep understanding of the reaction mechanism and catalysis principle, which has led to the continuous development of catalysts and processes. Herein, the recent progress in MTO catalyst development is summarized, focusing on the advances in the optimization of SAPO-34 catalysts, together with the development efforts on catalysts with preferential ethylene or propylene selectivity.

16.
ACS Appl Mater Interfaces ; 11(47): 44133-44143, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31612697

RESUMO

Shaping and optimal compositional formulation are major challenges in the successful industrial application of heterogeneous catalysts. The choice of components during formulation plays a vital role in endowing the final catalyst's mechanical strength, durability, and lifetime and may even affect activity and selectivity. Herein, we evaluate the application of spray drying to manufacture spherical ZSM-5-based catalysts and their applicability in the methanol-to-olefins process. Several critical parameters of the spray drying process and various aspects related to catalyst formulation (binder, zeolite, and clay) are investigated. Chemical composition and structure of the clay matrix substantially influence the catalytic performance.

17.
ChemCatChem ; 9(1): 183-194, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28163792

RESUMO

Operando UV/Vis spectroscopy with on-line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H-SAPO-34 as a methanol-to-olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as "seeds" for coke formation only.

18.
ACS Catal ; 7(8): 5268-5281, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28824823

RESUMO

The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV-vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward propylene increases in the temperature range of 573-623 K, while it decreases in the temperature range of 623-773 K. The high degree of incorporation of olefins, mainly propylene, into the hydrocarbon pool affects the product selectivity at lower reaction temperatures. The nature and dynamics of the active and deactivating hydrocarbon species with increasing reaction temperature were revealed by a non-negative matrix factorization of the time-resolved operando UV-vis diffuse reflectance spectra. The active hydrocarbon pool species consist of mainly highly methylated benzene carbocations at temperatures between 573 and 598 K, of both highly methylated benzene carbocations and methylated naphthalene carbocations at 623 K, and of only methylated naphthalene carbocations at temperatures between 673 and 773 K. The operando spectroscopy results suggest that the nature of the active species also influences the olefin selectivity. In fact, monoenylic and highly methylated benzene carbocations are more selective to the formation of propylene, whereas the formation of the group of low methylated benzene carbocations and methylated naphthalene carbocations at higher reaction temperatures (i.e., 673 and 773 K) favors the formation of ethylene. At reaction temperatures between 573 and 623 K, catalyst deactivation is caused by the gradual filling of the micropores with methylated naphthalene carbocations, while between 623 and 773 K the formation of neutral poly aromatics and phenanthrene/anthracene carbocations are mainly responsible for catalyst deactivation, their respective contribution increasing with increasing reaction temperature. Methanol pulse experiments at different temperatures demonstrate the dynamics between methylated benzene and methylated naphthalene carbocations. It was found that methylated naphthalene carbocations species are deactivating and block the micropores at low reaction temperatures, while acting as the active species at higher reaction temperatures, although they give rise to the formation of extended hydrocarbon deposits.

19.
ACS Catal ; 7(6): 4033-4046, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28603658

RESUMO

The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA