Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 108(9): 1631-1646, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293285

RESUMO

Although expression quantitative trait loci (eQTLs) have been powerful in identifying susceptibility genes from genome-wide association study (GWAS) findings, most trait-associated loci are not explained by eQTLs alone. Alternative QTLs, including DNA methylation QTLs (meQTLs), are emerging, but cell-type-specific meQTLs using cells of disease origin have been lacking. Here, we established an meQTL dataset by using primary melanocytes from 106 individuals and identified 1,497,502 significant cis-meQTLs. Multi-QTL colocalization with meQTLs, eQTLs, and mRNA splice-junction QTLs from the same individuals together with imputed methylome-wide and transcriptome-wide association studies identified candidate susceptibility genes at 63% of melanoma GWAS loci. Among the three molecular QTLs, meQTLs were the single largest contributor. To compare melanocyte meQTLs with those from malignant melanomas, we performed meQTL analysis on skin cutaneous melanomas from The Cancer Genome Atlas (n = 444). A substantial proportion of meQTL probes (45.9%) in primary melanocytes is preserved in melanomas, while a smaller fraction of eQTL genes is preserved (12.7%). Integration of melanocyte multi-QTLs and melanoma meQTLs identified candidate susceptibility genes at 72% of melanoma GWAS loci. Beyond GWAS annotation, meQTL-eQTL colocalization in melanocytes suggested that 841 unique genes potentially share a causal variant with a nearby methylation probe in melanocytes. Finally, melanocyte trans-meQTLs identified a hotspot for rs12203592, a cis-eQTL of a transcription factor, IRF4, with 131 candidate target CpGs. Motif enrichment and IRF4 ChIP-seq analysis demonstrated that these target CpGs are enriched in IRF4 binding sites, suggesting an IRF4-mediated regulatory network. Our study highlights the utility of cell-type-specific meQTLs.


Assuntos
Redes Reguladoras de Genes , Fatores Reguladores de Interferon/genética , Melanócitos/metabolismo , Melanoma/genética , Locos de Características Quantitativas , Neoplasias Cutâneas/genética , Alelos , Atlas como Assunto , Cromatina/química , Cromatina/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Fatores Reguladores de Interferon/metabolismo , Masculino , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma
2.
FASEB J ; 33(1): 833-843, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080444

RESUMO

One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation ß values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.


Assuntos
Metilação de DNA , Homocisteína/sangue , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Idoso , Mapeamento Cromossômico , Estudos de Coortes , Suplementos Nutricionais , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Estudos em Gêmeos como Assunto , Vitaminas/administração & dosagem
3.
Genome Med ; 14(1): 36, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35354486

RESUMO

BACKGROUND: Depression is a disabling and highly prevalent condition where genetic and epigenetic, such as DNA methylation (DNAm), differences contribute to disease risk. DNA methylation is influenced by genetic variation but the association between polygenic risk of depression and DNA methylation is unknown. METHODS: We investigated the association between polygenic risk scores (PRS) for depression and DNAm by conducting a methylome-wide association study (MWAS) in Generation Scotland (N = 8898, mean age = 49.8 years) with replication in the Lothian Birth Cohorts of 1921 and 1936 and adults in the Avon Longitudinal Study of Parents and Children (ALSPAC) (Ncombined = 2049, mean age = 79.1, 69.6 and 47.2 years, respectively). We also conducted a replication MWAS in the ALSPAC children (N = 423, mean age = 17.1 years). Gene ontology analysis was conducted for the cytosine-guanine dinucleotide (CpG) probes significantly associated with depression PRS, followed by Mendelian randomisation (MR) analysis to infer the causal relationship between depression and DNAm. RESULTS: Widespread associations (NCpG = 71, pBonferroni < 0.05, p < 6.3 × 10-8) were found between PRS constructed using genetic risk variants for depression and DNAm in CpG probes that localised to genes involved in immune responses and neural development. The effect sizes for the significant associations were highly correlated between the discovery and replication samples in adults (r = 0.79) and in adolescents (r = 0.82). Gene Ontology analysis showed that significant CpG probes are enriched in immunological processes in the human leukocyte antigen system. Additional MWAS was conducted for each lead genetic risk variant. Over 47.9% of the independent genetic risk variants included in the PRS showed associations with DNAm in CpG probes located in both the same (cis) and distal (trans) locations to the genetic loci (pBonferroni < 0.045). Subsequent MR analysis showed that there are a greater number of causal effects found from DNAm to depression than vice versa (DNAm to depression: pFDR ranged from 0.024 to 7.45 × 10-30; depression to DNAm: pFDR ranged from 0.028 to 0.003). CONCLUSIONS: PRS for depression, especially those constructed from genome-wide significant genetic risk variants, showed methylome-wide differences associated with immune responses. Findings from MR analysis provided evidence for causal effect of DNAm to depression.


Assuntos
Apresentação de Antígeno , Epigenoma , Adolescente , Adulto , Criança , Depressão/genética , Humanos , Estudos Longitudinais , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fatores de Risco
4.
World J Biol Psychiatry ; 23(8): 601-612, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34895032

RESUMO

OBJECTIVES: Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS: Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS: Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS: Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.


Assuntos
Coorte de Nascimento , Metilação de DNA , Recém-Nascido , Humanos , Estudos de Coortes , África do Sul , Encéfalo/patologia
5.
Schizophr Bull ; 46(2): 319-327, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31165892

RESUMO

Methylome-wide association studies (MWASs) are promising complements to sequence variation studies. We used existing sequencing-based methylation data, which assayed the majority of all 28 million CpGs in the human genome, to perform an MWAS for schizophrenia in blood, while controlling for cell-type heterogeneity with a recently generated platform-specific reference panel. Next, we compared the MWAS results with findings from 3 existing large-scale array-based schizophrenia methylation studies in blood that assayed up to ~450 000 CpGs. Our MWAS identified 22 highly significant loci (P < 5 × 10-8) and 852 suggestively significant loci (P < 1 × 10-5). The top finding (P = 5.62 × 10-11, q = 0.001) was located in MFN2, which encodes mitofusin-2 that regulates Ca2+ transfer from the endoplasmic reticulum to mitochondria in cooperation with DISC1. The second-most significant site (P = 1.38 × 10-9, q = 0.013) was located in ALDH1A2, which encodes an enzyme for astrocyte-derived retinoic acid-a key neuronal morphogen with relevance for schizophrenia. Although the most significant MWAS findings were not assayed on the arrays, we observed significant enrichment of overlapping findings with 2 of the 3 array datasets (P = 0.0315, 0.0045, 0.1946). Overrepresentation analysis of Gene Ontology terms for the genes in the significant overlaps suggested high similarity in the biological functions detected by the different datasets. Top terms were related to immune and/or stress responses, cell adhesion and motility, and a broad range of processes essential for neurodevelopment.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos
6.
Epigenetics ; 15(4): 431-438, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31739727

RESUMO

The majority of methylome-wide association studies (MWAS) have been performed using commercially available array-based technologies such as the Infinium Human Methylation 450K and the Infinium MethylationEPIC arrays (Illumina). While these arrays offer a convenient and relatively robust assessment of the probed sites they only allow interrogation of 2-4% of all CpG sites in the human genome. Methyl-binding domain sequencing (MBD-seq) is an alternative approach for MWAS that provides near-complete coverage of the methylome at similar costs as the array-based technologies. However, despite publication of multiple positive evaluations, the use of MBD-seq for MWAS is often fiercely criticized. Here we discuss key features of the method and debunk misconceptions using empirical data. We conclude that MBD-seq represents an excellent approach for large-scale MWAS and that increased utilization is likely to result in more discoveries, advance biological knowledge, and expedite the clinical translation of methylome-wide research findings.


Assuntos
Epigenoma , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Análise de Sequência de DNA/métodos , Ilhas de CpG , Epigenômica/normas , Estudo de Associação Genômica Ampla/normas , Humanos , Sensibilidade e Especificidade , Análise de Sequência de DNA/normas , Software
7.
Epigenomics ; 12(17): 1483-1499, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901515

RESUMO

Aim: We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. Materials & methods: We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). Results & conclusion: We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near TXNIP, ADCY7, SREBF1 and RAP1GAP2 that had not previously been associated with obesity-related traits.


Assuntos
Adiposidade/genética , Metilação de DNA , Sistema Endócrino/metabolismo , Epigênese Genética , Epigenômica , Sistema Imunitário/metabolismo , Estudos de Coortes , Ilhas de CpG , Suscetibilidade a Doenças , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Humanos , Obesidade/genética , Obesidade/metabolismo
8.
J Affect Disord ; 220: 117-128, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28618313

RESUMO

BACKGROUND: Studies of epigenetics and transcriptional activity in adolescents may provide knowledge about possible preventive strategies of depression. METHODS: We present a methylome-wide association study (MWAS) and cohort validation analysis of depression in adolescents, in two separate cohorts: discovery (n=93) and validation data set 1 (n=78). The genome-wide methylation pattern was measured from whole blood using the Illumina 450K array. A second validation cohort, validation data set 2, consists of post-mortem brain biopsies from depressed adults (n=58). We performed a MWAS by robust multiple linear regressions of methylation to a modified risk-score assessment of depression. Methylation levels of candidate CpG sites were correlated with expression levels of the associated gene in an independent cohort of 11 healthy volunteers. RESULTS: The methylation state of two CpG sites reliably predicted ratings of depression in adolescents (cg13227623 and cg04102384) (p<10E-06). Cohort validation analysis confirmed cg04102384 - located in the promoter region of microRNA 4646 (MIR4646) - to be hypomethylated in both validation data set 1 and validation data set 2 (p<0.05). Cg04102384 was inversely correlated to expression levels of MIR4646-3p in healthy controls (p<0.05). LIMITATIONS: MIR4646 was not differentially expressed in a subset of samples with adolescent depression measured by qRT-PCR measurements. CONCLUSION: We identify a specific MIR4646 associated epigenetic risk site to be associated with depression in adolescents. Cg04102384 putatively regulates gene expression of MIR4646-3p. Target gene prediction and gene set overrepresentation analysis revealed involvement of this miRNA in fatty acid elongation, a process related to omega-3 fatty acids, previously associated with depression.


Assuntos
Metilação de DNA , Transtorno Depressivo/genética , Epigênese Genética , MicroRNAs/genética , Acetiltransferases/genética , Adolescente , Estudos de Coortes , Ilhas de CpG/genética , Epigenômica , Elongases de Ácidos Graxos , Ácidos Graxos Ômega-3/genética , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real
9.
Epigenetics ; 12(9): 743-750, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28703682

RESUMO

We recently showed that, after optimization, our methyl-CpG binding domain sequencing (MBD-seq) application approximates the methylome-wide coverage obtained with whole-genome bisulfite sequencing (WGB-seq), but at a cost that enables adequately powered large-scale association studies. A prior drawback of MBD-seq is the relatively large amount of genomic DNA (ideally >1 µg) required to obtain high-quality data. Biomaterials are typically expensive to collect, provide a finite amount of DNA, and may simply not yield sufficient starting material. The ability to use low amounts of DNA will increase the breadth and number of studies that can be conducted. Therefore, we further optimized the enrichment step. With this low starting material protocol, MBD-seq performed equally well, or better, than the protocol requiring ample starting material (>1 µg). Using only 15 ng of DNA as input, there is minimal loss in data quality, achieving 93% of the coverage of WGB-seq (with standard amounts of input DNA) at similar false/positive rates. Furthermore, across a large number of genomic features, the MBD-seq methylation profiles closely tracked those observed for WGB-seq with even slightly larger effect sizes. This suggests that MBD-seq provides similar information about the methylome and classifies methylation status somewhat more accurately. Performance decreases with <15 ng DNA as starting material but, even with as little as 5 ng, MBD-seq still achieves 90% of the coverage of WGB-seq with comparable genome-wide methylation profiles. Thus, the proposed protocol is an attractive option for adequately powered and cost-effective methylome-wide investigations using (very) low amounts of DNA.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , Sítios de Ligação , Ilhas de CpG , Epigenômica/métodos , Feminino , Genoma Humano , Humanos , Pessoa de Meia-Idade , Sulfitos/química
10.
Schizophr Bull ; 42(4): 1018-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26656881

RESUMO

Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management.


Assuntos
Encéfalo/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Transtornos Psicóticos/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Autopsia , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Neuropeptídeos/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/sangue , Transtornos Psicóticos/genética , Esquizofrenia/sangue , Esquizofrenia/genética
11.
Curr Genet Med Rep ; 2(4): 261-270, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25422794

RESUMO

DNA methylation (DNAm) is an essential epigenetic mechanism for normal development, and its variation may be associated with diseases. High-throughput technology allows robust measurement of DNA methylome in population studies. Methylome-wide association studies (MWAS) scan DNA methylome to detect new epigenetic loci affecting disease susceptibility. MWAS is an emerging approach to unraveling the mechanism linking genetics, environment, and human diseases. Here I review the recent studies of genetic determinants and environmental modifiers of DNAm, and the concept for partitioning genetic and environmental contribution to DNAm. These studies establish the correlation maps between genome and methylome, and enable the interpretation of epigenetic association with disease traits. Recent findings suggested that MWAS was a promising genomic method to identify epigenetic predictors accounting for unexplained disease risk. However, new study designs, analytical methods and shared resources need to be implemented to address the limitations and challenges in future epigenomic epidemiologic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA