Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 366, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387643

RESUMO

BACKGROUND: Glioblastoma (GBM) is malignant, demanding more attention to the improvement of the diagnosis and therapy. LncRNAs have been implicated in the malignancy of GBM cells. METHODS: HOXA-AS2, miR-2116-3p and SERPINA3 expression levels in GBM tissues and cell lines were detected by qRT-PCR. Western blotting was performed to detect the protein levels of Bax and Bcl-2. Dual-luciferase reporter assay was for detection of relationship among these factors, together with RIP and RNA pull-down. CCK-8, EdU, wound healing and transwell assays were for detection of the role of HOXA-AS2, miR-2116-3p and SERPINA3 in cell viability, proliferation, migration and invasion in GBM, respectively. RESULTS: HOXA-AS2 and SERPINA3 showed higher level in GBM tissues and cell lines. Low level of HOXA-AS2 attenuated GBM cell growth in vitro. Moreover, the anti-tumor impact of silenced HOXA-AS2 was restored by miR-2116-3p inhibitor, but its tumor-promotional effect could be reversed by silenced SERPINA3. CONCLUSION: HOXA-AS2 enhanced GBM cell malignancy through sponging miR-2116-3p and releasing SERPINA3, which might shed light on the diagnosis and therapy for GBM in the future.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Serpinas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serpinas/genética , Serpinas/metabolismo
2.
J Transl Med ; 19(1): 451, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715879

RESUMO

BACKGROUND: Hypertrophic scar (HTS) is a fibrotic disorder of skins and may have repercussions on the appearance as well as functions of patients. Recent studies related have shown that competitive endogenous RNA (ceRNA) networks centering around miRNAs may play an influential role in HTS formation. This study aimed to construct and validate a three-miRNA (miR-422a, miR-2116-3p, and miR-3187-3p) ceRNA network, and explore its potential functions. METHODS: Quantitative real­time PCR (qRT­PCR) was used to compare expression levels of miRNAs, lncRNAs, and genes between HTS and normal skin. Target lncRNAs and genes of each miRNA were predicted using starBase as well as TargetScan database to construct a distinct ceRNA network; overlapping target lncRNAs and genes of the three miRNAs were utilized to develop a three-miRNA ceRNA network. For every network, protein-protein interaction (PPI) network analysis was performed to identify its hub genes. For each network and its hub genes, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to explore their possible functions. RESULTS: MiR-422a, miR-2116-3p, and miR-3187-3p were all downregulated in HTS tissues and fibroblasts. MiR-422a-based ceRNA network consisted of 101 lncRNAs with 133 genes; miR-2116-3p-centered ceRNA network comprised 85 lncRNAs and 978 genes; miR-3187-3p-derived ceRNA network encompassed 84 lncRNAs as well as 1128 genes. The three-miRNA ceRNA network included 2 lncRNAs with 9 genes, where MAPK1, FOSL2, ABI2, KPNA6, CBL, lncRNA-KCNQ1OT1, and lncRNA-EBLN3P were upregulated. According to GO and KEGG analysis, these networks were consistently related to ubiquitination. Three ubiquitination-related genes (CBL, SMURF2, and USP4) were upregulated and negatively correlated with the expression levels of the three miRNAs in HTS tissues. CONCLUSIONS: This study identified a three-miRNA ceRNA network, which might take part in HTS formation and correlate with ubiquitination.


Assuntos
Cicatriz Hipertrófica , MicroRNAs , RNA Longo não Codificante , Cicatriz Hipertrófica/genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro , Proteases Específicas de Ubiquitina
3.
Cancer Biol Ther ; 21(11): 1025-1032, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073675

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common digestive malignant tumors globally. Focally amplified lncRNA on chromosome 1 (FALEC) is a novel lncRNA that has been reported to be involved in many biological processes during carcinogenesis. However, its role in CRC remains poorly understood. METHODS: Gene expression at mRNA or protein level was measured by qRT-PCR or western blot, respectively. In vitro experiments including EdU, colony formation, flow cytometry, wound-healing and transwell assays, as well as in vivo xenograft experiment, were utilized to determine the functional role of FALEC in CRC. Relevant mechanical assays were performed to investigate the underlying molecular mechanism. RESULTS: FALEC was aberrantly up-regulated in CRC. FALEC knockdown could impair CRC cell proliferation, migration and invasion, whereas facilitate cell apoptosis. MiR-2116-3p was revealed to be sponged by FALEC. PIWIL1 was identified as the target of miR-2116-3p. Mechanically, FALEC restored the expression of PIWIL1 via absorbing miR-2116-3p. MiR-2116-3p inhibition and PIWIL1 enrichment could counteract the anti-tumor impact induced by silenced FALEC on the oncogenic behaviors of CRC cells. CONCLUSION: Our study revealed that FALEC promoted CRC progression via restoring the expression of miR-2116-3p-targeted PIWIL1, suggesting the potential application of targeting FALEC in the treatment of CRC.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Proteínas Argonautas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Transfecção
4.
Cancer Biother Radiopharm ; 34(6): 388-397, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30939038

RESUMO

Background: It is reported that long noncoding RNAs play an important role in human cancers, including breast cancer (BC). However, the effect of long intergenic non-protein coding RNA 1433 (LINC01433) on BC development remains elusive. Materials and Methods: The expression level of LINC01433 in BC cells and a normal breast epithelial cell (MCF-10A) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). A series of functional assays was applied to measure the bio-function of LINC01433 in BC. Bioinformatics analysis and mechanistic assays were utilized to disclose the underlying mechanism involved in the LINC01433-mediated BC cellular process. Results: qRT-PCR revealed that LINC01433 was highly expressed in BC cells. In function, LINC01433 depletion suppressed BC cell proliferation, migration, and epithelial-mesenchymal transition, but induced cell apoptosis. Mechanically, chromatin immunoprecipitation and luciferase reporter assays suggested that LINC01433 was activated by its upstream transcription factor MYC proto-oncogene (MYC). The interaction between LINC01433 and miR-2116-3p was verified in BC. Additionally, MYC was validated as a target gene of miR-2116-3p. Rescue assays demonstrated that LINC01433 promoted BC cellular process via regulating miR-2116-3p/MYC axis. Conclusion: Our findings revealed a novel positive feedback loop (LINC01433/miR-2116-3p/MYC) in BC progression and discovered the novel functional genes in this BC cellular process.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA