Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Physiol ; 234(10): 18415-18422, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30908634

RESUMO

Emerging studies have indicated that long noncoding RNAs (lncRNAs) possess various functions in initiating human cancers. However, the role of lncRNAs in hepatocellular carcinoma (HCC) still remains ill understood. In this study, we sought to investigate the role of lncRNA CACNA1G-AS1 in HCC progression. Through bioinformatics analysis, we found that CACNA1G-AS1 expression was significantly upregulated in HCC tissues compared with that in the adjacent normal tissues. Moreover, CACNA1G-AS1 upregulation indicated poor prognosis in HCC patients. Knockdown of CACNA1G-AS1 attenuated the proliferation, migration, and invasion of HCC cells. Additionally, decreased expression of CACNA1G-AS1 prevented epithelial-mesenchymal transition. In vivo assay also showed that CACNA1G-AS1 silencing HCC cells have smaller tumor volumes and weights. Further investigations demonstrated that CACNA1G-AS1 worked as a competing endogenous RNA to bind microRNA-2392 (miR-2392) and thereby alleviate the repression of the downstream target C1orf61. Collectively, CACNA1G-AS1 promotes HCC progression through regulating the miR-2392/C1orf61 pathway.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Progressão da Doença , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Regulação para Cima
2.
Gene ; 879: 147598, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393060

RESUMO

INTRODUCTION: Somatic cell fate transition is now gained great importance in tissue regeneration. Currently, research is focused on heart tissue regeneration by reprogramming diverse cells into cardiomyocyte-like cells. Here, we examined the possible effect of miRNAs on the transdifferentiation of fibroblasts into cardiomyocyte-like cells. METHODS: First heart-specific miRNAs were identified by comparing the gene expression profiles of heart tissue to other body tissues using bioinformatic techniques. After identifying heart-specific miRNAs, their cellular and molecular functions were studied using the miRWalk and miRBase databases. Then the candidate miRNA was cloned into a lentiviral vector. Following, human dermal fibroblasts were cultured and treated with compounds forskolin, valproic acid, and CHIR99021. After 24 h, the lentivector harboring miRNA gene was transfected into the cells to initiate the transdifferentiation process. Finally, after a two-week treatment period, the efficiency of transdifferentiation was examined by inspecting the appearance of the cells and measuring the expression levels of cardiac genes and proteins using RT-qPCR and immunocytochemistry techniques. RESULTS: Nine miRNAs were identified with higher expression in the heart. The miR-2392 was nominated as the candidate miRNA due to its function and specific expression in the heart. This miRNA has a direct connection with genes involved in cell growth and differentiation; e.g., MAPK and Wnt signaling pathways. According to in vitro results cardiac genes and proteins demonstrated an increase in expression in the fibroblasts that simultaneously received the three chemicals and miR-2392. CONCLUSION: Considering the ability of miR-2392 to induce the expression of cardiac genes and proteins in fibroblast cells, it can induce fibroblasts to differentiate into cardiomyocyte-like cells. Therefore, miR-2392 could be further optimized for cardiomyocyte regeneration, tissue repair, and drug design studies.


Assuntos
MicroRNAs , Miócitos Cardíacos , Humanos , Diferenciação Celular/genética , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
3.
Cell Rep ; 37(3): 109839, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34624208

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Assuntos
COVID-19/genética , COVID-19/imunologia , MicroRNAs/genética , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antivirais/farmacologia , Biomarcadores/metabolismo , Cricetinae , Feminino , Furões , Regulação da Expressão Gênica , Glicólise , Voluntários Saudáveis , Humanos , Hipóxia , Inflamação , Masculino , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos , Curva ROC , Ratos , Tratamento Farmacológico da COVID-19
5.
Biosci Rep ; 39(10)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31652445

RESUMO

Keloids are very resistant to treatment in dermatology and plastic surgical practice. The present study aimed to explore the underlying mechanism of botulinum toxin A (BTXA) treated human skin keloid fibroblasts (HSFBs) proving some new insights into keloids treatment. Expression of miR-1587 and miR-2392 were significantly down-regulated in keloid tissues and HSFBs, while the ZEB2 was a target of both and up-regulated in keloid tissues and HSFBs compared with the normal controls. BTXA could significantly increase the expression of miR-1587 and miR-2392 but decrease the expression of ZEB2. BTXA could significantly inhibit the proliferation, cell cycle, and migration and promote apoptosis and autophagy of HSFBs; however, miR-1587 and miR-2392 inhibitors could reverse these effects of BTXA on HSFBs. Silencing ZEB2 could significantly attenuate the effects of miR-1587 and miR-2392 inhibitors in promoting cell proliferation and migration and suppressing apoptosis and autophagy of HSFBs after treating with BTXA. BTXA could suppress the proliferation and migration and promote apoptosis and autophagy of HSFBs via modulating miR-1587/miR-2392 targeted ZEB2.


Assuntos
Autofagia/efeitos dos fármacos , Toxinas Botulínicas Tipo A/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/metabolismo , Queloide/metabolismo , MicroRNAs/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Autofagia/genética , Linhagem Celular , Transição Epitelial-Mesenquimal/genética , Fibroblastos/patologia , Humanos , Queloide/genética , Queloide/patologia , MicroRNAs/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA