Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Cell Mol Med ; 28(18): e70115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39320274

RESUMO

The study aimed to reveal the function of LXY30 peptide-modified bone marrow mesenchymal stem cell-derived exosomes (LXY30-Exos) in NSCLC. LXY30 peptide is a peptide ligand targeting α3ß1 integrin, and LXY30 specifically binds to Exos derived from different cells. We use transmission electron microscopy to identify LXY30-Exos and tracking analysis for particles, and the LXY30-Exos internalized by NSCLC cells in vitro and targeted NSCLC tumours in vivo were verified by multiple molecular technologies. The functions of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 were assessed using cell proliferation, migration and cell apoptosis assays. Meanwhile, the safety of the above engineered Exos was evaluated in vivo. After LXY30-Exos were isolated and identified, LXY30-Exos were confirmed to be internalized by NSCLC cells in vitro and specifically targeted NSCLC tumours in vivo. Functionally, LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 weakened the proliferation, migration and cell cycle of NSCLC cells induced cellular apoptosis in vitro and restrained the tumour progression in vivo. Meanwhile, the safety of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 was confirmed in vivo. Overall, miR-30c, miR-181b and miR-613 encapsulated in LXY30 peptide-modified BMSC-Exos relieved NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/metabolismo , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Pineal Res ; 76(6): e13009, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315577

RESUMO

Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.


Assuntos
Artrite Reumatoide , Fibroblastos , Melatonina , Músculo Esquelético , Melatonina/farmacologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/tratamento farmacológico , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/efeitos dos fármacos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/tratamento farmacológico , Masculino , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Camundongos Endogâmicos DBA
3.
J Oral Pathol Med ; 53(7): 468-479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802299

RESUMO

BACKGROUND: circRNAs have been shown to participate in diverse diseases; however, their role in oral submucous fibrosis (OSF), a potentially malignant disorder, remains obscure. Our preliminary experiments detected the expression of circRNA mitochondrial translation optimization 1 homologue (circMTO1) in OSF tissues (n = 20) and normal mucosa tissues (n = 20) collected from Hunan Xiangya Stomatological Hospital, and a significant decrease of circMTO1 expression was showed in OSF tissues. Therefore, we further explored circMTO1 expression in OSF. METHODS: Target molecule expression was detected using RT-qPCR and western blotting. The migration and invasion of buccal mucosal fibroblasts (BMFs) were assessed using wound healing and Transwell assays. The interaction between miR-30c-5p, circMTO1, and SOCS3 was evaluated using dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down assays. The colocalisation of circMTO1 and miR-30c-5p was observed using fluorescence in situ hybridisation (FISH). RESULTS: circMTO1 and SOCS3 expression decreased, whereas miR-30c-5p expression increased in patients with OSF and arecoline-stimulated BMFs. Overexpression of circMTO1 effectively restrained the fibroblast-myofibroblast transition (FMT), as evidenced by the increase in expression of Coll I, α-SMA, Vimentin, and the weakened migration and invasion functions in BMFs. Mechanistic studies have shown that circMTO1 suppresses FMT by enhancing SOCS3 expression by sponging miR-30c-5p and subsequently inactivating the FAK/PI3K/AKT pathway. FMT induced by SOCS3 silencing was reversed by the FAK inhibitor TAE226 or the PI3K inhibitor LY294002. CONCLUSION: circMTO1/miR-30c-5p/SOCS3 axis regulates FMT in arecoline-treated BMFs via the FAK/PI3K/AKT pathway. Expanding the sample size and in vivo validation could further elucidate their potential as therapeutic targets for OSF.


Assuntos
Fibroblastos , MicroRNAs , Fibrose Oral Submucosa , RNA Circular , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , MicroRNAs/metabolismo , Fibrose Oral Submucosa/patologia , Fibrose Oral Submucosa/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fibroblastos/metabolismo , RNA Circular/genética , Miofibroblastos , Masculino , Movimento Celular , Mucosa Bucal/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Transdução de Sinais , Feminino , Células Cultivadas
4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339132

RESUMO

The diagnosis of endometriosis by laparoscopy is delayed until advanced stages. In recent years, microRNAs have emerged as novel biomarkers for different diseases. These molecules are small non-coding RNA sequences involved in the regulation of gene expression and can be detected in peripheral blood. Our aim was to identify candidate serum microRNAs associated with endometriosis and their role as minimally invasive biomarkers. Serum samples were obtained from 159 women, of whom 77 were diagnosed with endometriosis by laparoscopy and 82 were healthy women. First, a preliminary study identified 29 differentially expressed microRNAs between the two study groups. Next, nine of the differentially expressed microRNAs in the preliminary analysis were evaluated in a new cohort of 67 women with endometriosis and 72 healthy women. Upon validation by quantitative real-time PCR technique, the circulating level of miR-30c-5p was significantly higher in the endometriosis group compared with the healthy women group. The area under the curve value of miR-30c-5p was 0.8437, demonstrating its diagnostic potential even when serum samples registered an acceptable limit of hemolysis. Dysregulation of this microRNA was associated with molecular pathways related to cancer and neuronal processes. We concluded that miR-30c-5p is a potential minimally invasive biomarker of endometriosis, with higher expression in the group of women with endometriosis diagnosed by laparoscopy.


Assuntos
Endometriose , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Endometriose/diagnóstico , Endometriose/genética , Biomarcadores , Morte Celular , Reação em Cadeia da Polimerase em Tempo Real
5.
J Virol ; 96(14): e0075922, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867570

RESUMO

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets, thus playing important roles in the host response to pathogenic infection. However, the role of miRNAs in host response to ARV infection is still not clear. In this study, we show that ARV infection markedly increased gga-miR-30c-5p expression in DF-1 cells and that transfection of cells with gga-miR-30c-5p inhibited ARV replication while knockdown of endogenous gga-miR-30c-5p enhanced viral growth in cells. Importantly, we identified the autophagy related 5 (ATG5), an important proautophagic protein, as a bona fide target of gga-miR-30c-5p. Transfection of DF-1 cells with gga-miR-30c-5p markedly reduced ATG5 expression accompanied with reduced conversion of ARV-induced-microtubule-associated protein 1 light chain 3 II (LC3-II) from LC3-I, an indicator of autophagy in host cell, while knockdown of endogenous gga-miR-30c-5p enhanced ATG5 expression as well as ARV-induced conversion of LC3-II, facilitating viral growth in cells. Furthermore, knockdown of ATG5 by RNA interference (RNAi) or treatment of cells with autophagy inhibitors (3-MA and wortmannin) markedly reduced ARV-induced LC3-II and syncytium formation, suppressing viral growth in cells, while overexpression of ATG5 increased ARV-induced LC3-II and syncytium formation, promoting viral growth in cells. Thus, gga-miR-30c-5p suppressed viral replication by inhibition of ARV-induced autophagy via targeting ATG5. These findings unraveled the mechanism of how host cells combat against ARV infection by self-encoded small RNA and furthered our understanding of the role of microRNAs in host response to pathogenic infection. IMPORTANCE Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, and retarded growth, leading to considerable economic losses to the poultry industry across the globe. Elucidation of the pathogenesis of ARV infection is crucial to guiding the development of novel vaccines or drugs for the effective control of these diseases. Here, we investigated the role of miRNAs in host response to ARV infection. We found that infection of host cells by ARV remarkably upregulated gga-miR-30c-5p expression. Importantly, gga-miR-30c-5p suppressed ARV replication by inhibition of ARV-induced autophagy via targeting autophagy related 5 (ATG5) accompanied by suppression of virus-induced syncytium formation, thus serving as an important antivirus factor in host response against ARV infection. These findings will further our understanding of how host cells combat against ARV infection by self-encoded small RNAs and may be used as a potential target for intervening ARV infection.


Assuntos
Proteína 5 Relacionada à Autofagia , MicroRNAs , Orthoreovirus Aviário , Infecções por Reoviridae , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Galinhas/genética , MicroRNAs/genética , Orthoreovirus Aviário/patogenicidade , Orthoreovirus Aviário/fisiologia , Infecções por Reoviridae/prevenção & controle , Replicação Viral
6.
Ecotoxicol Environ Saf ; 249: 114392, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508811

RESUMO

Epithelial-mesenchymal transdifferentiation of alveolar type Ⅱ epithelial cells is a vital source of pulmonary myofibroblasts, and myofibroblasts formation is recognized as an important phase in the pathological process of silicosis. miR-30c-5p has been determined to be relevant in the activation of the epithelial-mesenchymal transition (EMT) in numerous disease processes. However, elucidating the role played by miR-30c-5p in the silicosis-associated EMT process remains a great challenge. In this work, based on the establishment of mouse silicosis and A549 cells EMT models, miR-30c-5p was interfered with in vivo and in vitro models to reveal its effects on EMT and autophagy. Moreover, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), connective tissue growth factor (CTGF), autophagy-related gene 5 (ATG5), and autophagy were further interfered with in the A549 cells models to uncover the possible molecular mechanism through which miR-30c-5p inhibits silicosis associated EMT. The results demonstrated the targeted binding of miR-30c-5p to CTGF, ATG5, and MALAT1, and showed that miR-30c-5p could prevent EMT in lung epithelial cells by acting on CTGF and ATG5-associated autophagy, thereby inhibiting the silicosis fibrosis process. Furthermore, we also found that lncRNA MALAT1 might competitively absorb miR-30c-5p and affect the EMT of lung epithelial cells. In a word, interfering with miR-30c-5p and its related molecules (MALAT1, CTGF, and ATG5-associated autophagy) may provide a reference point for the application of silicosis intervention-related targets.


Assuntos
Células Epiteliais Alveolares , Proteína 5 Relacionada à Autofagia , Fator de Crescimento do Tecido Conjuntivo , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Longo não Codificante , Silicose , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Proteína 5 Relacionada à Autofagia/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Dióxido de Silício/toxicidade , Silicose/genética , Silicose/metabolismo
7.
Ren Fail ; 45(1): 2204953, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37125614

RESUMO

OBJECTIVES: Recent evidence suggested that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in the pathogenesis of vascular calcification (VC). In this study, we tried to explore the expression and role of a lncRNA, i.e., metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and a miRNA, i.e., miR-30c, in VC. METHODS: In vitro VC model was induced in human vascular smooth muscle cells (VSMCs) after 10 days culture in calcifying medium containing 2 mM Na2HPO4. Alizarin red S staining, calcium assay and western blot analysis of runt-related transcription factor 2 (Runx2) and alpha smooth muscle actin (α-SMA) were performed to evaluate VC. Knockdown of MALAT1 and up-regulation of MALAT1, miR-30c and Runx2 was performed to determine the impact of these molecules on VSMCs calcification. Dual-luciferase report assay was performed to confirm the relationship between MALAT1 and miR-30c or miR-30c and Runx2. In addition, quantitative reverse transcription PCR and western blot were used to determine gene and protein expression. RESULTS: MALAT1 was increased, while miR-30c was decreased in calcified VSMCs. Knockdown of MALAT1 suppressed VSMCs calcification; on the contrary, up-regulation of MALAT1 promoted VSMCs calcification. The effect of MALAT1 over-expression on VSMCs calcification was reversed by upregulation of miR-30c, which was reversed again by upregulation of Runx2. Dual-luciferase report assay confirmed that there is a direct interaction between MALAT1 and miR-30c, and Runx2 is a direct target of miR-30c. CONCLUSION: MALAT1 over-expression promoted VSMCs calcification, which was at least partially through regulating the miR-30c/Runx2 axis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Calcificação Vascular , Humanos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Calcificação Vascular/patologia
8.
Mol Cancer ; 21(1): 51, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164771

RESUMO

BACKGROUND: N6-methyladenosine (m6A) RNA methylation and circular RNAs (circRNAs) have been shown to act vital roles in multiple malignancies including gastric cancer (GC). However, there is little knowledge about how m6A modification of circRNAs contributes to GC progression. METHODS: The association of METTL14 expression with the clinicopathological characteristics and prognosis in patients with GC was assessed by Western blot, Immunohistochemistry and public datasets. In vitro and vivo function experiments were conducted to investigate the role of METTL14 in GC. Furthermore, m6A-circRNA epitranscriptomic microarray was utilized to identify METTL14-mediated m6A modification of circRNAs, which were validated by methylated RNA immunoprecipitation (Me-RIP), RT-qPCR and rescue experiments in GC cells. The sponge of circORC5 with miR-30c-2-3p was confirmed by luciferase gene report and RNA immunoprecipitation assays. The expression, localization and prognosis of circORC5 in GC were evaluated by fluorescence in situ hybridization. The effects of METTL14 and (or) circORC5 on miR-30c-2-3p-mediated AKT1S1 and EIF4B were estimated by RT-qPCR and Western blot analyses. RESULTS: We found that METTL14 was downregulated in GC tissue samples and its low expression acted as a prognostic factor of poor survival in patients with GC. Ectopic expression of METTL14 markedly repressed growth and invasion of GC cells in vitro and in vivo, whereas knockdown of METTL14 harbored the opposite effects. Mechanically, m6A-circRNA epitranscriptomic microarray and Me-RIP identified circORC5 as the downstream target of METTL14. Silencing of METTL14 reduced the m6A level of circORC5, but increased circORC5 expression. Moreover, circORC5 could sponge miR-30c-2-3p, and reverse METTL14-caused upregulation of miR-30c-2-3p and downregulation of AKT1S1 and EIF4B. In addition, circORC5 possessed a negative correlation with miR-30c-2-3p and indicated a poor survival in GC. CONCLUSION: Our findings demonstrate that METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Metiltransferases , MicroRNAs , RNA Circular , Neoplasias Gástricas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
9.
Biochem Biophys Res Commun ; 604: 88-95, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35303684

RESUMO

Circular RNAs (circRNAs), characterized as single-stranded closed circular RNA molecules, have been established to exert pivotal functions in various biological or pathological processes. Nonetheless, the effects and underlying mechanisms concerning circRNAs on the aging and aging-related diseases remain elusive. We herein compared the expression patterns of circRNAs in young and senescent mouse embryonic fibroblasts (MEFs), and uncovered that circRNF169 was dramatically up-regulated in senescent MEFs compared with that in young MEFs. Therefore, we further digged into the role and potential mechanisms of circRNF169 in the senescence of MEFs. The results of senescence-associate-ß-galactosidase staining and BrdU incorporation assay showed that silencing of circRNF169 significantly delayed MEFs senescence and promoted cell proliferation, while ectopic expression of circRNF169 exhibited the opposite effects. Moreover, the dual-luciferase reporter assay confirmed that circRNF169 acted as an endogenous miR-30c-5p sponge, which accelerated cellular senescence by sequestering and inhibiting miR-30c-5p activity. Taken together, our results suggested that circRNF169 exerted a crucial role in cellular senescence through sponging miR-30c-5p and represented a promising target for aging intervention.


Assuntos
Senescência Celular , MicroRNAs , RNA Circular , Animais , Proliferação de Células/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/fisiologia , RNA Circular/genética , RNA Circular/fisiologia
10.
Biochem Biophys Res Commun ; 626: 58-65, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35970045

RESUMO

Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.


Assuntos
Corpos Embrioides , MicroRNAs , Diferenciação Celular/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
11.
J Transl Med ; 20(1): 20, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991623

RESUMO

BACKGROUND: The aberrant expression of E3 ubiquitin ligase Pellino-1 (PELI1) contributes to several human cancer development and progression. However, its expression patterns and functional importance in papillary thyroid cancer (PTC) remains unknown. METHODS: PELI1 expression profiles in PTC tissues were obtained and analyzed through the starBase v3.0 analysis. Real-time PCR, Immunohistochemical assays (IHC) and Western blot were used to investigate the mRNA and protein levels of PELI1 in PTC. The effects of PELI1 on PTC cell progression were evaluated through CCK-8, colony formation, Transwell, and Wound healing assay in vitro, and a PTC xenograft mouse model in vivo. The downstream target signal of PELI1 in PTC was analyzed by using Kyoto encyclopedia of genes and genomes (KEGG), and bioinformatics tools were used to identify potential miRNAs targeting PELI1. Human umbilical cord mesenchymal stem cells were modified by miR-30c-5p and the miR-30c-5p containing extracellular vesicles were collected (miR-30c-5p-EVs) by ultra-high-speed centrifugation method. Then, the effects of miR-30c-5p-EVs on PELI1 expression and PTC progression were evaluated both in vitro and in vivo. RESULTS: Both mRNA and protein expression of PELI1 were widely increased in PTC tissues, and overexpression of PELI1 was positively correlated with bigger tumor size and lymph node metastases. PELI1 promoted PTC cell proliferation and migration in vitro. While, PELI1 silencing significantly suppressed PTC growth in vivo accompanied with reduced expression of Ki-67 and matrix metallopeptidase 2 (MMP-2). Mechanistically, PI3K-AKT pathway was identified as the downstream target of PELI1, and mediated the functional influence of PELI1 in PTC cells. Moreover, we found that the expression of miR-30c-5p was inversely correlated with PELI1 in PTC samples and further confirmed that miR-30c-5p was a tumor-suppressive miRNA that directly targeted PELI1 to inhibit PTC cell proliferation and migration. Furthermore, we showed that miR-30c-5p-EVs could effectively downregulate PELI1 expression and suppress the PTC cell growth in vitro and in vivo. CONCLUSION: This study not only supported the first evidence that miR-30c-5p loss-induced PELI1 accumulation facilitated cell proliferation and migration by activating the PI3K-AKT pathway in PTC but also provided novel insights into PTC therapy based on miR-carrying-hUCMSC-EVs.


Assuntos
MicroRNAs/genética , Neoplasias da Glândula Tireoide , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Recept Signal Transduct Res ; 42(3): 302-312, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151713

RESUMO

Emodin has been shown to exert a renoprotective effect in diabetic nephropathy (DN). In this paper, we investigated whether circular RNAs (circRNAs) might be involved in the renoprotective mechanism of emodin in DN. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were measured using the corresponding assay kits. The expression levels of circ_0000064, microRNA (miR)-30c-5p, large multifunctional protease 7 (Lmp7), fibronectin (FN), and collagen type I (Col.1) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Subcellular localization assay was used to assess the cellular localization of circ_0000064. Targeted relationships among circ_0000064, miR-30c-5p and Lmp7 were confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Our data showed the alleviative effect of emodin on HG-induced oxidative stress, inflammation and extracellular matrix (ECM) accumulation in SV-MES13 cells. Circ_0000064 was an importantly downstream effector of emodin function in HG-induced SV40-MES13 cells. Moreover, circ_0000064 directly targeted miR-30c-5p, and circ_0000064 modulated Lmp7 expression through miR-30c-5p. Circ_0000064 silencing alleviated HG-induced cell oxidative stress, inflammation and ECM accumulation via up-regulating miR-30c-5p. The enforced expression of miR-30c-5p attenuated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells by targeting Lmp7. Our findings identified that emodin alleviated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells at least partially by the regulation of the circ_0000064/miR-30c-5p/Lmp7 axis.


Assuntos
Nefropatias Diabéticas , Emodina , MicroRNAs , Complexo de Endopeptidases do Proteassoma , RNA Circular , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Emodina/farmacologia , Matriz Extracelular/genética , Glucose/efeitos adversos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Células Mesangiais/efeitos dos fármacos , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Circular/genética
13.
FASEB J ; 35(5): e21571, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33861889

RESUMO

Liver fibrosis is a common feature of liver dysfunction during chronic liver diseases and is frequently associated with angiogenesis, a dynamic process that forms new blood vessels from preexisting vasculature. MicroRNAs (miRNAs), which act as posttranscriptional regulators of gene expression, have been shown to regulate liver fibrosis; however, how miRNAs regulate angiogenesis and its mechanism in fibrosis are not well understood. We aimed to elucidate the role and mechanism of miR-30c in attenuating liver fibrosis. Using miRNA profiling of fibrotic murine livers, we identified differentially regulated miRNAs and discovered that miR-30c is aberrantly expressed and targets endothelial delta-like ligand 4 (DLL4) in either carbon tetrachloride-treated or bile duct ligated fibrotic mice, as well as in patients with liver fibrosis. Using CCK-8, wound healing and Matrigel tube formation assays, we found that miR-30c inhibited liver sinusoidal endothelial cell (LSEC) proliferation, migration, and angiogenesis capacity by targeting DLL4 in vitro. Importantly, nanoparticle-based delivery of miR-30c to LSECs inhibited the DLL4/Notch pathway and angiogenesis, thereby ameliorating liver fibrosis in vivo. Collectively, our findings demonstrate a protective role of miR-30c in liver fibrosis by regulating DLL4/Notch signaling and angiogenesis. Thus, miR-30c may serve as a potential treatment for chronic liver diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Cirrose Hepática/prevenção & controle , Fígado/metabolismo , MicroRNAs/genética , Neovascularização Patológica/prevenção & controle , Adulto , Animais , Tetracloreto de Carbono/toxicidade , Feminino , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Patológica/etiologia , Neovascularização Patológica/patologia
14.
Heart Vessels ; 37(6): 1085-1096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320391

RESUMO

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.


Assuntos
Aterosclerose , Arteriosclerose Intracraniana , MicroRNAs , RNA Longo não Codificante/genética , Aterosclerose/patologia , Movimento Celular , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo , Humanos , Arteriosclerose Intracraniana/metabolismo , Arteriosclerose Intracraniana/patologia , Lipoproteínas LDL , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo , Sindecana-2/farmacologia
15.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430472

RESUMO

Neuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-ß1-mediated mechanism. Herein, we show that miR-30c-5p inhibition leads to global DNA hyper-methylation of neurons in the lumbar dorsal root ganglia and spinal dorsal horn in rats subjected to sciatic nerve injury. Specifically, the inhibition of miR-30-5p significantly increased the expression of the novo DNA methyltransferases DNMT3a and DNMT3b in those structures. Furthermore, we identified the mechanism and found that miR-30c-5p targets the mRNAs of DNMT3a and DNMT3b. Quantitative methylation analysis revealed that the promoter region of the antiallodynic cytokine TGF-ß1 was hypomethylated in the spinal dorsal horn of nerve-injured rats treated with the miR-30c-5p inhibitor, while the promoter of Nfyc, the host gene of miR-30c-5p, was hypermethylated. These results are consistent with long-term protection against neuropathic pain development after nerve injury. Altogether, our results highlight the key role of miR-30c-5p in the epigenetic mechanisms' underlying neuropathic pain and provide the basis for miR-30c-5p as a therapeutic target.


Assuntos
MicroRNAs , Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Neuralgia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/genética , Metilases de Modificação do DNA/genética , Epigênese Genética , DNA
16.
Diabetologia ; 64(6): 1422-1435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655378

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus causes a progressive loss of functional efficacy in stem cells, including cardiac progenitor cells (CPCs). The underlying molecular mechanism is still not known. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate genes at the post-transcriptional level. We aimed to determine if diabetes mellitus induces dysregulation of miRNAs in CPCs and to test if in vitro therapeutic modulation of miRNAs would improve the functions of diabetic CPCs. METHODS: CPCs were isolated from a mouse model of type 2 diabetes (db/db), non-diabetic mice and human right atrial appendage heart tissue. Total RNA isolated from mouse CPCs was miRNA profiled using Nanostring analysis. Bioinformatic analysis was employed to predict the functional effects of altered miRNAs. MS analysis was applied to determine the targets, which were confirmed by western blot analysis. Finally, to assess the beneficial effects of therapeutic modulation of miRNAs in vitro and in vivo, prosurvival miR-30c-5p was overexpressed in mouse and human diabetic CPCs, and the functional consequences were determined by measuring the level of apoptotic cell death, cardiac function and mitochondrial membrane potential (MMP). RESULTS: Among 599 miRNAs analysed in mouse CPCs via Nanostring analysis, 16 miRNAs showed significant dysregulation in the diabetic CPCs. Using bioinformatics tools and quantitative real-time PCR (qPCR) validation, four altered miRNAs (miR-30c-5p, miR-329-3p, miR-376c-3p and miR-495-3p) were identified to play an important role in cell proliferation and survival. Diabetes mellitus significantly downregulated miR-30c-5p, while it upregulated miR-329-3p, miR-376c-3p and miR-495-3p. MS analysis revealed proapoptotic voltage-dependent anion-selective channel 1 (VDAC1) as a direct target for miR-30c-5p, and cell cycle regulator, cyclin-dependent protein kinase 6 (CDK6), as the direct target for miR-329-3p, miR-376c-3p and miR-495-3p. Western blot analyses showed a marked increase in VDAC1 expression, while CDK6 expression was downregulated in diabetic CPCs. Finally, in vitro and in vivo overexpression of miR-30c-5p markedly reduced the apoptotic cell death and preserved MMP in diabetic CPCs via inhibition of VDAC1. CONCLUSIONS/INTERPRETATION: Our results demonstrate that diabetes mellitus induces a marked dysregulation of miRNAs associated with stem cell survival, proliferation and differentiation, and that therapeutic overexpression of prosurvival miR-30c-5p reduced diabetes-induced cell death and loss of MMP in CPCs via the newly identified target for miR-30c-5p, VDAC1.


Assuntos
Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco/patologia
17.
Toxicol Appl Pharmacol ; 426: 115637, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217758

RESUMO

MicroRNAs (miRNAs) are critical regulatory factors in myocardial ischemia/reperfusion (I/R) injury. The miRNA miR-30c-5p has been reported as a key mediator in several myocardial abnormalities. However, the precise roles and mechanisms of miR-30c-5p in myocardial I/R injury remain not well-studied. This project aimed to explore the potential function of this miRNA in mediating myocardial I/R injury. Significant induction of miR-30c-5p was observed in myocardial tissue of rats with myocardial I/R injury in vivo and cardiomyocytes with hypoxia/re­oxygenation (H/R) injury in vitro. Functional studies elucidated that forced expression of miR-30c-5p in rats effectively reduced infarct area, cardiac apoptosis, oxidative stress and inflammation induced by myocardial I/R injury. Moreover, in vitro cardiomyocytes with forced expression of miR-30c-5p were also protected from H/R-induced apoptosis, oxidative stress and inflammation. Importantly, BTB domain and CNC homology 1 (Bach1) was identified as a new target of miR-30c-5p. miR-30c-5p was shown to promote the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via the inhibition of Bach1. The re-expression of Bach1 reversed miR-30c-5p-mediated-cardioprotective effects against myocardial I/R injury in vivo or H/R injury in vitro. Overall, our results demonstrate that forced expression of miR-30c-5p exhibited beneficial effects against myocardial I/R injury through enhancement of Nrf2 activation via inhibition of Bach1. This work reveals a novel molecular mechanism for myocardial I/R injury at the miRNA level and suggests a therapeutic value of miR-30c-5p in treatment of myocardial I/R injury.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , MicroRNAs , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Masculino , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley
18.
Mol Biol Rep ; 48(4): 3431-3437, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33913094

RESUMO

Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs. We recently demonstrated that α2-antiplasmin (α2AP) is elevated in SSc dermal fibroblasts and SSc model mice, and is associated with fibrosis progression and vascular dysfunction. In the present study, we predicted that α2AP could be a target of microRNA-30c (miR-30c) using TargetScan online database, and investigated the effect of miR-30c on the pathogenesis of SSc using a bleomycin-induced SSc model mice. miR-30c attenuated α2AP expression, and prevented the pro-fibrotic changes (increased dermal thickness, collagen deposition, myofibroblast accmulation) and the vascular dysfunction (the reduction of vascular endothelial cells (ECs) and blood flow) in the skin of SSc model mice. Furthermore, miR-30c suppressed pulmonary fibrosis progression in the SSc model mice. miR-30c exerts the anti-fibrotic and anti-angiopathy effects on SSc model mice, and might provide a basis for clinical strategies for SSc.


Assuntos
Escleroderma Sistêmico/metabolismo , Pele/irrigação sanguínea , alfa 2-Antiplasmina/genética , Animais , Bleomicina/toxicidade , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miofibroblastos , Escleroderma Sistêmico/genética , Pele/efeitos dos fármacos , Pele/metabolismo
19.
Twin Res Hum Genet ; 24(1): 22-28, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33775270

RESUMO

The purpose of our study was to elucidate the functions of miR-30c-5p on adenomyosis for exploring novel treatment strategies. We first detected the expression of miR-30c-5p in clinical adenomyotic tissues and isolated endometrial cells from adenomyotic tissues. Next, gain and loss-of-function assays were performed to detect the effect of miR-30c-5p on adenomyotic endometrial cells. Further, luciferase assay and real-time polymerase chain reaction as well as western blot were conducted to investigate the potential target of miR-30c-5p; and transwell assay, wound-healing assay and CCK-8 assay were used to evaluate the effects of miR-30c-5p and its target on regulating biological functions of adenomyotic endometrial cells. Our results found that miR-30c-5p was down-regulated in both adenomyosis tissues and adenomyotic epithelial cells, which correlated with dysmenorrhea, longer duration of symptoms and more menstrual bleeding. Moreover, the overexpression of miR-30c-5p inhibited the proliferation, migration and invasion of adenomyotic epithelial cells, where miR-30c-5p knockdown had an opposite effect. Furthermore, we confirmed mitogen-activated protein kinase 1 (MAPK1) was one of the direct targets of miR-30c-5p, indicating its important role in miR-30c-5p-mediated suppression of proliferation, invasion and migration in adenomyotic epithelial cells. This study showed that the interaction of miR-30c-5p with MAPK1 can regulate the proliferation, invasion and migration in adenomyotic epithelial cells.


Assuntos
Adenomiose , MicroRNAs , Adenomiose/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno
20.
J Cell Mol Med ; 24(19): 11500-11511, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860492

RESUMO

MiRNAs can be used as promising diagnostic biomarkers of heart failure, while lncRNAs act as competing endogenous RNAs of miRNAs. In this study, we collected peripheral blood monocytes from subjects with or without HF to explore the association between certain lncRNAs, miRNAs and HF. Heart failure patients with preserved or reduced ejection fraction were recruited for investigation. ROC analysis was carried out to evaluate the diagnostic values of certain miRNAs and lncRNAs in HF. Luciferase assays were used to study the regulatory relationship between above miRNAs and lncRNAs. LncRNA overexpression was used to explore the effect of certain miRNAs in H9C2 cells. Expression of miR-30c was significantly decreased in the plasma and peripheral blood monocytes of patients suffering from heart failure, especially in these with reduced ejection fraction. On the contrary, the expression of lncRNA-CASC7 was remarkably increased in the plasma and peripheral blood monocytes of patients suffering from heart failure. Both miR-30c and lncRNA-CASC7 expression showed a promising efficiency as diagnostic biomarkers of heart failure. Luciferase assays indicated that miR-30c played an inhibitory role in lncRNA-CASC7 and IL-11 mRNA expression. Moreover, the overexpression of lncRNA-CASC7 suppressed the expression of miR-30c while evidently increasing the expression of IL-11 mRNA and protein in H9C2 cells. This study clarified the relationship among miR-30c, lncRNA-CASC7 and IL-11 expression and the risk of heart failure and showed that lncRNA-CASC7 is potentially involved in the pathogenesis of HF via modulating the expression of miR-30c.


Assuntos
Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Idoso , Animais , Sequência de Bases , Biomarcadores/sangue , Linhagem Celular , Regulação para Baixo/genética , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/patologia , Humanos , Interleucina-11/metabolismo , Masculino , MicroRNAs/sangue , MicroRNAs/metabolismo , Monócitos/metabolismo , RNA Longo não Codificante/genética , Curva ROC , Ratos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA