Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 740-752, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38477044

RESUMO

Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.


Assuntos
Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Fibronectinas , MicroRNAs , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Fibronectinas/genética , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649241

RESUMO

α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.


Assuntos
Proteína Forkhead Box O3/metabolismo , Cirrose Hepática , MAP Quinase Quinase 4/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , MicroRNAs/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
3.
BMC Pregnancy Childbirth ; 23(1): 624, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648962

RESUMO

BACKGROUND: Aneuploidy pregnancy is a severe major birth defect and causes about 50% spontaneous miscarriages with unknown etiology. To date, only a few epidemiological studies with small sample sizes have investigated the risk factors for aneuploidy pregnancy. TP53, MDM2, and miR-34b/c genes are implicated in tumorigenesis with aneuploidy, yet the function of their polymorphisms in aneuploidy pregnancy susceptibility needs to be clarified. OBJECTIVE: To elucidate the association of TP53 rs1042522 G > C, MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C specific polymorphisms with aneuploidy pregnancy. METHODS: In the retrospective case-control study, 330 aneuploidies pregnancy women and 813 normal pregnancy controls were recruited between January 2018 and April 2022 at the First People's Hospital of Yunnan Province, Kunming, China. Three functional polymorphisms, the TP53 rs1042522 G > C (Arg72Pro), MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C, were genotyped using the snapshot method. RESULTS: The frequency distribution of three genotypic variants was not different between case and control pregnant women and was similar to with Hardy-Weinberg Equilibrium (HWE). However, in the younger subgroup (less than 35 years old), a significant difference was detected in allele and recessive model (p = 0.01). In the advanced age subgroup (more than or equal to 35 years old), G of MDM2 rs2279744 T > G revealed a significantly higher frequency in cases than controls (p = 0.045), and miR-34b/c rs4938723 T > C revealed a significant difference under the dominant model (p = 0.03), but no significant differences were observed in other models and in both younger and older subgroup (p > 0.05, respectively). These results suggest that individual polymorphisms were not associated with aneuploidy pregnancy, combined with age, they may serve as a risk factor for aneuploidy pregnancy. CONCLUSION: Combination of TP53 rs1042522 G > C, MDM2 rs2279744 T > G, and miR-34b/c rs4938723 T > C polymorphisms with maternal age may be related to aneuploidy pregnancy susceptibility. These findings might elaborate on the genetic etiology of aneuploidy pregnancy.


Assuntos
Aneuploidia , MicroRNAs , Gravidez , Humanos , Feminino , Adulto , Estudos de Casos e Controles , China , Estudos Retrospectivos , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-mdm2/genética
4.
Cancer Metastasis Rev ; 40(3): 925-948, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33959850

RESUMO

MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.


Assuntos
MicroRNAs , Neoplasias , Animais , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo
5.
Biochem Biophys Res Commun ; 627: 111-121, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36030652

RESUMO

Characterized by compensatory hyperplasia dependent on hepatocyte proliferation, the liver will initiate regeneration after partial hepatectomy (PH) and acute or chronic injuries. A variety of genes and noncoding RNAs play pivotal roles in these cell proliferation and growth processes. However, it is still unclear how competition endogenous RNAs (ceRNAs) modulate cellular activities during each phase of liver regeneration, and the specific mechanisms of posttranscriptional gene expression regulation in hepatocyte proliferation remain to be elucidated. To investigate the mechanism of liver regeneration through RNA-seq profiling and to determine the role of miR-34b-5p/PDK1 on hepatocyte proliferation, we established a 2/3 PH mouse model for whole transcriptome profiling based on high-throughput sequencing techniques. We subsequently constructed a lncRNA-miRNA-mRNA ceRNA regulatory network through integrative analyses of RNA interactions. Finally, plasmid transfection in NCTC 1469 cells, dual luciferase reporter gene assay, quantitative real-time PCR, western blotting, Cell Counting Kit-8, and EdU-DNA synthesis cell proliferation assay were used to demonstrate the role of the miR-34b-5p/PDK1 axis in hepatocyte proliferation in vitro. A total of 1443 mRNAs (962 up, 481 down), 48 miRNAs (35 up, 13 down), and 1955 lncRNAs (986 up, 969 down) were identified as significantly differentially expressed. We then successfully constructed a ceRNA regulatory network consisting of 7 lncRNAs, 15 miRNAs, and 347 mRNAs based on the predicted inverse interactions among ceRNAs. Additionally, miR-34b-5p/PDK1 was predicted to be closely related to hepatocyte proliferation. We further demonstrated that miR-34b-5p could bind specifically to the 3'-untranslated region (3'-UTR) of PDK1 using the dual luciferase reporter assay. Ectopic overexpression of miR-34b-5p significantly reduced the mRNA and protein expression of PDK1, while it markedly inhibited the proliferation of mouse NCTC 1469 cells in vitro. In contrast, knocking down miR-34b-5p exhibited the inverse effects on PDK1 expression and hepatocyte proliferation. Through analyzing the ceRNA network during mouse liver regeneration, this study reveals that miR-34b-5p can inhibit hepatocyte proliferation through negatively regulating PDK1 and may be a potential pharmacological intervention target.


Assuntos
MicroRNAs , RNA Longo não Codificante , 1-Fosfatidilinositol 4-Quinase/genética , Regiões 3' não Traduzidas , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Hiperplasia , Regeneração Hepática/genética , Camundongos , MicroRNAs/metabolismo , Fosfatidilinositóis , Proteínas Quinases/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA-Seq
6.
Cancer Cell Int ; 22(1): 381, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457043

RESUMO

MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.

7.
Front Zool ; 19(1): 23, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163040

RESUMO

BACKGROUND: Sex differentiation can be viewed as a controlled regulatory balance between sex differentiation-related mRNAs and post-transcriptional mechanisms mediated by non-coding RNAs. In mammals, increasing evidence has been reported regarding the importance of gonad-specific microRNAs (miRNAs) in sex differentiation. Although many fishes express a large number of gonadal miRNAs, the effects of these sex-biased miRNAs on sex differentiation in teleost fish remain unknown. Previous studies have shown the exclusive and sexually dimorphic expression of miR-34b/c in the gonads of the Amur sturgeon (Acipenser schrenckii), suggesting its potential role in the sex differentiation process. RESULTS: Using quantitative real-time PCR (qPCR), we observed that miR-34b/c showed consistent spatiotemporal expression patterns; the expression levels significantly increased during early sex differentiation. Using in situ hybridization, miR-34c was found to be located in the germ cells. In primary germ cells in vitro, the group subjected to overexpression and inhibition of miR-34c showed significantly higher proliferation ability and lower apoptosis, respectively, compared to the corresponding control group. Luciferase reporter assays using the ar-3'UTR-psiCHECK-2 luciferase vector suggested a targeted regulatory interaction between miR-34b/c and the 3'UTR of the androgen receptor (ar) mRNA. Furthermore, miR-34b/c and ar showed negative expression patterns during early sex differentiation. Additionally, a negative feedback regulation pattern was observed between foxl2 expression in the ovaries and amh and sox9 expression in the testes during early sex differentiation. CONCLUSIONS: This study sheds new light on the roles of miR-34b/c in gonad development of Amur sturgeon, and provides the first comprehensive evidence that the gonad-predominant microRNAs may have a major role in sex differentiation in teleost fish.

8.
Mol Cell Biochem ; 477(3): 951-963, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098439

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent subtype of non-Hodgkin lymphoma and is a very aggressive malignancy with tumor growing rapidly in organs like lymph nodes. The pathogenesis of DLBCL is not clear and the prognosis of DLBCL requires improvement. Here, we investigated the mechanisms of DLBCL, with the focus on lncRNA PVT1/miR-34b-5p/Foxp1 axis. Human DLBCL tissues from diagnosed DLBCL patients and four human DLBCL cell lines, one normal human B lymphoblastoid cell line were used. qRT-PCR and western blotting were employed to measure expression levels of lncRNA PVT1, Foxp1, miR-34b-5p, ß-catenin, and proliferation-related proteins. MTT assay and colony formation assay were performed to determine cell proliferation. Flow cytometry was used to examine cell apoptosis. ChIP and Dual-luciferase assay were utilized to validate interactions of Foxp1/promoters, PVT1/miR-34b-5p and miR-34b-5p/Foxp1. Mouse tumor xenograft model was used to determine the effect of sh-PVT1 on tumor growth in vivo. In this study, we found PVT1 and Foxp1 were elevated in DLBCL tissues and cells while miR-34b-5p was decreased. Knockdown of PVT1, overexpression of miR-34b-5p, or Foxp1 knockdown repressed DLBCL cell proliferation but enhanced cell apoptosis. PVT1 directly bound miR-34b-5p to disinhibit Foxp1/ß-catenin signaling. Foxp1 regulated CDK4, CyclinD1, and p53 expression via binding with their promoters. Knockdown of Foxp1 partially reversed the effects of miR-34b-5p inhibitor on DLBCL cell proliferation and apoptosis. Inhibition of PVT1 through shRNA suppressed DLBCL tumor growth in vivo. All in all, lncRNA PVT1 promotes DLBCL progression via acting as a miR-34b-5p sponge to disinhibit Foxp1/ß-catenin signaling.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Humanos , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Proteínas Repressoras/genética
9.
Adv Exp Med Biol ; 1385: 187-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352215

RESUMO

MicroRNAs (miRNAs) are important components of the signaling cascades that mediate and regulate tumor suppression exerted by p53. This review illustrates some of the main principles that underlie the mechanisms by which miRNAs participate in p53's function and how they were identified. Furthermore, the current status of the research on the connection between p53 and miRNAs, as well as alterations in the p53/miRNA pathways found in cancer will be summarized and discussed. In addition, experimental and bioinformatic approaches which can be applied to study the connection between p53 and miRNAs are described. Although, some of the central miRNA-encoding genes that mediate the effects of p53, such as the miR-34 and miR-200 families, have been identified, much more analyses remain to be performed to fully elucidate the connections between p53 and miRNAs.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/genética , Biologia Computacional
10.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 558-566, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720323

RESUMO

Cisplatin resistance is a major challenge for bladder cancer (BC). Evidence indicates that exosome derived from cancer-associated fibroblasts (CAF-Exo) can promote chemotherapy resistance in various human tumors by delivering bioactive molecules. We have previously demonstrated that CAF-derived exosomal LINC00355 promotes BC cell proliferation and invasion. However, the underlying mechanisms are still unclear. In this study, we aimed to investigate the role and mechanisms of CAF-derived exosomal LINC00355 in BC cell resistance to cisplatin. Exosomes were isolated from normal fibroblasts (NFs) and BC tumor-derived CAFs, namely, NF-Exo and CAF-Exo. CAFs were transfected with si-Ctrl or si-LINC00355 and then different exosomes were isolated, namely, CAFsi-Ctrl-Exo and CAFsi-LINC00355-Exo. The human BC cell lines (T24 and 5367) were incubated with NF-Exo, CAF-Exo, CAFsi-Ctrl-Exo, and CAFsi-LINC00355-Exo in the presence of cisplatin. MTT proliferation assay and flow cytometric analysis showed that CAF-Exo promoted BC cell resistance to cisplatin and upregulated ABCB1 expression in BC cells by transferring LINC00355 to BC cells. Luciferase activity assay confirmed the interaction between miR-34b-5p and LINC00355 or ABCB1. qRT-PCR and western blot analysis further showed that LINC00355 sponged miR-34b-5p to upregulate ABCB1 expression. However, the promoting effects of CAF-Exo on BC cell resistance to cisplatin were abolished by miR-34b-5p overexpression and ABCB1 silencing. In conclusion, exosomal LINC00355 derived from CAFs promotes BC cell resistance to cisplatin by regulating the miR-34b-5p/ABCB1 axis.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
11.
Biochem Genet ; 59(3): 714-730, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33512625

RESUMO

DNA methylation of Interleukin-12B (IL-12B) and miR-34b was proved to affect the expression of IL-12B and miR-34b, which were found to be involved in the pathogenesis of ankylosing spondylitis (AS). However, the molecular mechanisms underlying the role of IL-12B and miR-34b in AS remain to be explored. AS patients were divided into four groups according to their status of DNA methylation of miR-34b and IL-12B by bisulfite sequencing: HYPER-miR-34b + HYPO-IL-12B, HYPER-miR-34b + HYPER-IL-12B, HYPO-miR-34b + HYPER-IL-12B and HYPO-miR-34b + HYPO-IL-12B groups. Functional indicators were examined for patients with different status of DNA methylation in their miR-34b and IL-12B promoters. QPCR was performed to examine the expression of miR-34b and IL-12B mRNA under different conditions. ELISA was used to measure the expression of IL-12B p40 in the peripheral blood. Western blot was used to analyze the expression of IL-12B proteins. Luciferase assay was carried out to explore the suppressive role of miR-34b in IL-12B expression. The level of Ankylosing Spondylitis Disease Activity Score with C-reactive protein (ASDAS-CRP) was gradually increased in HYPER-miR-34b + HYPO-IL-12B,HYPER-miR-34b + HYPER-IL-12B,HYPO-miR-34b + HYPER-IL-12B and HYPO-miR-34b + HYPO-IL-12B groups, whereas the levels of Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI) were significantly elevated in the HYPO-miR-34b + HYPO-IL-12B group and diminished in the HYPER-miR-34b + HYPO-IL-12B group. The expression of miR-34b in the PBMCs and peripheral blood was remarkably higher in the HYPER-miR-34b + HYPO-IL-12B and HYPER-miR-34b + HYPER-IL-12B groups, whereas the expression of IL-12B was gradually decreased in the HYPER-miR-34b + HYPO-IL-12B, HYPER-miR-34b + HYPER-IL-12B, HYPO-miR-34b + HYPER-IL-12B and HYPO-miR-34b + HYPO-IL-12B groups. Luciferase assays with the transfection of miR-34b precursors suggested that miR-34b strongly suppressed the expression of IL-12B in THP-1 cells. In conclusion, our study demonstrated that hypermethylated miR-34b promoter led to evident upregulation of miR-34b, thus inhibiting the expression of IL-12B and alleviated the severity of ankylosing spondylitis by reducing the levels of factors including ASDAS-CRP, BASFI and BASMI.


Assuntos
Metilação de DNA , Subunidade p40 da Interleucina-12/genética , MicroRNAs/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Espondilite Anquilosante/genética , Adulto , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Células THP-1
12.
Biochem Genet ; 59(6): 1381-1395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33856598

RESUMO

Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes. The methods for GDM early diagnosis and treatment are still unknown. This study aimed to investigate the expression and diagnostic potential of miR-34b-3p in GDM patients and further analyzed the effects of miR-34b-3p on HUVECs viability and migration. The expression of miR-34b-3p was detected in HUVECs of GDM and normal pregnant women by qRT-PCR. Then the HUVECs were isolated from normal pregnant women. High glucose (HG) was used to treat the HUVECs to mimic the GDM in vitro. The cell viability and migration were determined by MTT, wound healing assay, and transwell assay. The interaction between miR-34b-3p and PDK1 was evaluated by luciferase activity assay. Our results showed that miR-34b-3p was up-regulated in HUVECs of GDM patients. Then the HUVECs were isolated from normal pregnant women and they were treated with HG to mimic the GDM in vitro. Interestingly, knockdown of miR-34b-3p restored the impairment of HG treatment-induced effects in HUVECs. More importantly, PDK1 was proved to be a potential target of miR-34b-3p. Finally, the rescue experiments confirmed that miR-34b-3p impaired cell viability and migration ability in HUVECs by targeting PDK1. These findings concluded that miR-34b-3p impaired HUVECs viability and migration in GDM by targeting PDK1, which might provide a novel perspective for the pathogenesis and underlying therapeutic target for GDM.


Assuntos
Diabetes Gestacional , MicroRNAs , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sobrevivência Celular , Diabetes Gestacional/genética , Feminino , Humanos , MicroRNAs/genética , Gravidez
13.
Andrologia ; 53(7): e14071, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900636

RESUMO

Cyclophosphamide (CP) is commonly used as an anticancer agent but has been associated with high toxicity in several organs, including the testes. In this study, we aimed to evaluate the effects of CP-induced testicular toxicity, using glial cell line-derived neurotrophic factor (GDNF), occludin and transforming growth factor beta 3 (TGF-ß3) primary antibodies, and miR-34b and miR-34c expressions. Eighteen young Balb/c male mice were divided into three groups. The control group received no treatment. The mice of CP group were injected 100 mg kg-1  day-1 CP for 5 days, and the same amount of saline was injected in the sham group. The animals were sacrificed 24 hr after the last injection. Immunohistochemical analysis of testicular tissues showed a decrease in both spermatogenic germ cell count and also GDNF, occludin expressions, but an increase in TGF-ß3 expression in the CP group compared to the others group. The expressions of miR-34b and miR-34c were examined by qPCR technique, a significant decrease was observed in tissue samples in the CP-treated group. The expression of GDNF, occludin and TGF-ß3 plays an important role in testicular injury caused by CP, and the decrease in the expression of miR-34b/c in tissue samples may be an important marker for the detection of testicular damage.


Assuntos
MicroRNAs , Testículo , Animais , Ciclofosfamida/toxicidade , Regulação para Baixo , Masculino , Camundongos , MicroRNAs/genética , Espermatogênese
14.
Ren Fail ; 43(1): 291-301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33494641

RESUMO

OBJECTIVE: This study was designed to uncover the mechanism of miR-34b-5p-mediated aquaporin-2 (AQP2) in sepsis-induced injury using human renal tubular epithelial cells (HK-2). METHODS: Serum levels of miR-34b-5p, TNF-α, IL-1ß, IL-6, serum creatinine (SCr), and blood urea nitrogen (BUN) in septic patients with acute kidney injury (AKI) and healthy controls were detected. Lipopolysaccharide (LPS) was used to induce sepsis in HK-2 cells. LPS-induced HK-2 cells were transfected with miR-34b-5p inhibitor, miR-34b-5p mimic, pcDNA3.1-AQP2, si-AQP2, miR-34b-5p inhibitor + si-NC, or miR-34b-5p inhibitor + si-AQP2. The expressions of miR-34b-5p, AQP2, Bax, Bcl-2, cleaved caspase-3, TNF-α, IL-1ß, and IL-6 in HK-2 cells were detected. TUNEL staining revealed the apoptosis of HK-2 cells. Dual-luciferase reporter assay verified the binding between miR-34b-5p and AQP2. RESULTS: The expression of miR-34b-5p and the inflammatory responses were augmented in septic AKI patients. miR-34b-5p was up-regulated and AQP2 was down-regulated in LPS-induced HK-2 cells. miR-34b-5p inhibition or AQP2 overexpression ameliorated apoptosis and inflammation in LPS-induced HK-2 cells. In contrast, overexpressing miR-34b-5p deteriorated LPS-induced injury in HK-2 cells. AQP2 was a downstream target of miR-34b-5p. AQP2 silencing abolished the suppressive effects of miR-34b-5p inhibition on LPS-induced apoptosis and inflammatory response in HK-2 cells. CONCLUSION: miR-34b-5p inhibits AQP2 to promote LPS-induced injury in HK-2 cells.


Assuntos
Injúria Renal Aguda/imunologia , Aquaporina 2/genética , Túbulos Renais/patologia , MicroRNAs/metabolismo , Sepse/complicações , Injúria Renal Aguda/patologia , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/imunologia , Estudos de Casos e Controles , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Voluntários Saudáveis , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Túbulos Renais/citologia , Túbulos Renais/imunologia , Lipopolissacarídeos/imunologia , Masculino , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Sepse/imunologia , Adulto Jovem
15.
Mol Cancer ; 19(1): 83, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375768

RESUMO

BACKGROUND: Accumulating evidence suggests that circular RNAs (circRNAs) are important participants in cancer progression. However, the biological processes and underlying mechanisms of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear. METHOD: CircRNAs were verified by Sanger sequencing. Colony formation, 5-Ethynyl-2'-deoxyuridine (EdU), and Transwell assays were performed to investigate the effect of circBFAR on the proliferation, invasion, and migration of PDAC cells in vitro. RNA pull-down assays were conducted to verify the binding of circBFAR with microRNA miR-34b-5p. RESULTS: In the present study, we identified a novel circRNA (termed as circBFAR, hsa_circ_0009065) that was upregulated in a 208-case cohort of patients with PDAC. The ectopic expression of circBFAR correlated positively with the tumor-node-metastasis (TNM) stage and was related to poorer prognosis of patients with PDAC. Moreover, circBFAR knockdown dramatically inhibited the proliferation and motility of PDAC cells in vitro and their tumor-promoting and metastasis properties in in vivo models. Mechanistically, circBFAR upregulated mesenchymal-epithelial transition factor (MET) expression via sponging miR-34b-5p. Additionally, circBFAR overexpression increased the expression of MET and activated downstream phosphorylation of Akt (Ser 473) and further activated the MET/PI3K/Akt signaling pathway, which ultimately promoted the progression of PDAC cells. Importantly, application of MET inhibitors could significantly attenuate circBFAR-mediated tumorigenesis in vivo. CONCLUSIONS: Our findings showed that circBFAR plays an important role in the proliferation and metastasis of PDAC, which might be explored as a potential prognostic marker and therapeutic target for PDAC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Circular/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-met/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Gene Med ; 22(7): e3182, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32166848

RESUMO

BACKGROUND: Hepatoblastoma is a rare malignancy originating from pluripotent stem cells with unknown etiology. An understanding of the etiology in pediatric hepatoblastoma has been hampered by the unavailability of sufficient patient samples. To date, only a few epidemiological studies with small sample sizes have been performed investigating risk factors for hepatoblastoma. TP53 and pri-miR-34b/c genes are implicated in the tumorigenesis, yet the role of their polymorphisms in hepatoblastoma susceptibility remains unknown. METHODS: We conducted a seven-center case-control study to explore the genetic variants predisposing to hepatoblastoma susceptibility. In our study, we genotyped two functional polymorphisms, the TP53 rs1042522 C>G (Arg72Pro) and miR-34b/c rs4938723 T>C, in 313 cases and 1446 controls using the TaqMan method. RESULTS: Single loci analysis showed that neither TP53 rs1042522 C>G, nor miR-34b/c rs4938723 T>C significantly modified hepatoblastoma risk. In the stratification analysis, we identified that the miR-34b/c rs4938723 TC/CC genotypes were associated with a decreased risk in patients with clinical stages III + IV hepatoblastoma (adjusted odds ratio = 0.53, 95% confidence interval = 0.33-0.84, P=0.007] compared to the rs4938723 TT genotype. Subsequent analysis further showed that the combination of TP53 and miR-34b/c variant genotypes had no impact on susceptibility hepatoblastoma. CONCLUSIONS: Taken together, TP53 rs1042522 C>G and miR-34b/c rs4938723 T>C may not confer hepatoblastoma susceptibility. These findings may aid in our understanding of the genetic etiology of hepatoblastoma.


Assuntos
Predisposição Genética para Doença , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Fatores Etários , Povo Asiático , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Estadiamento de Neoplasias , Razão de Chances , Fatores de Risco , Fatores Sexuais
17.
J Appl Toxicol ; 40(4): 525-534, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883144

RESUMO

The interactions between adenosine triphosphate-binding cassette (ABC) transporters and nano-sized materials are attracting increasing attention, due to their great potential in overcoming the multidrug resistance (MDR) phenomena in cancer treatment. However, the inner mechanisms involved in the interactions are largely unknown. In this study, two commercial quantum dots (QDs), CdSe/ZnS-MPA and CdSe/ZnS-GSH, were tested for their interactions with P-glycoprotein (P-gp), as well as the relating mechanisms in lung cancer (A549) cells. Both QDs significantly suppressed the gene and protein expressions of P-gp in A549 cells. To explain this, the gene expressions of nine relating microRNAs (miRNAs) were evaluated. The results indicated a shared up-regulation of miR-34b and miR-185 by both QDs. Furthermore, mimics and inhibitors of miR-34b and miR-185 significantly enhanced and suppressed the gene and protein expressions of P-gp, respectively, confirming the modulatory function of these two miRNAs on P-gp. Interestingly, expressions of both miRNAs were suppressed during treatment with Cd2+ and doxorubicin, which induced the expression of P-gp, indicating the universality of these miRNAs-related mechanisms. Thus, as miR-34b and miR-185 participated in the suppression of P-gp functions in A549 cells they could be interesting targets for the treatment of lung cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Compostos de Cádmio/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Sulfetos/toxicidade , Compostos de Zinco/toxicidade , Células A549 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Cloreto de Cádmio/toxicidade , Regulação para Baixo , Doxorrubicina/toxicidade , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Medição de Risco
18.
Zhonghua Nan Ke Xue ; 26(12): 1059-1067, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34898078

RESUMO

OBJECTIVE: To investigate the role of miR-34b/c and miR-449 in maintaining the normal structure and function of efferent ductules and explore the molecular mechanism of infertility in miR-34b/c-/- and miR-449-/- dKO mice. METHODS: We observed the morphology of mouse efferent ductules by HE staining and analyzed the gene expressions in the efferent ductules of the wild-type and miR-34b/c-/- and miR-449-/- dKO mice by RNA sequencing. Then we screened the possible target genes of these two miRNA clusters and analyzed them along with the differentially expressed genes, followed by verification of the sequencing results by qRT-PCR. RESULTS: Compared with the wild-type, the dKO mice showed morphologically abnormal efferent ductules and significantly decreased expressions of the genes involved in the formation of cilia and related to the transportation of water, ion and protein in the efferent ductules. CONCLUSIONS: The deletion of miR-34b/c and miR-449 led to morphological abnormality of efferent ductules and dysfunction of aberrant cilia motility and reabsorption in the efferent ductules of dKO mice, resulting in infertility.


Assuntos
MicroRNAs , Transcriptoma , Animais , Movimento Celular , Epididimo , Perfilação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/genética
19.
J Cell Mol Med ; 23(8): 5282-5291, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199581

RESUMO

Lung cancer is the most common incident cancer, with a high mortality worldwide, and non-small-cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR-34b-3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR-34b-3p was down-regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR-34b-3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR-34b-3p could bind to the cyclin-dependent kinase 4 (CDK4) mRNA 3'-untranslated region (3'-UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR-34-3p-repressed NSCLC cell growth. In conclusion, our findings reveal that miR-34b-3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR-34b-3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Quinase 4 Dependente de Ciclina/genética , MicroRNAs/genética , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Movimento Celular/genética , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino
20.
J Cell Biochem ; 120(8): 12875-12886, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861198

RESUMO

In this study, we aimed to investigate the association between rs4938723 single-nucleotide polymorphism (SNP) and the risk of primary open-angle glaucoma (POAG) in a Chinese population to clarify the molecular mechanism underlying the pathogenesis of POAG. Taqman assays and statistical analyses were utilized to analysis the associations between rs4938723 SNP/rs1042522 SNP and the risk of POAG. Luciferase assays, in-silicon analyses, real-time PCR, Western Blot, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and flow cytometry were conducted to establish a molecular pathway underlying the protective effect of rs4938723 T > C SNP against the risk of POAG. The maximum intraocular pressure (IOP) was evidently higher in the case group compared with that in the control group. The risk of POAG was evidently decreased among carriers of the CT/CC genotypes under a dominant model. In addition, the risk of POAG was also significantly decreased in the carriers of the CC genotype. In contrary, no significant association was found between the risk of POAG and the rs1042522 SNP in TP53 gene. In addition, rs4938723 (especially rs4938723 T > C) SNP could elevate the transcription efficiency of miR-34b promoter and the suppression of TP53, a virtual target of miR-34b. Therefore, the presence of anti-miR-34b suppressed cell proliferation and promoted cell apoptosis, thus establishing a molecular mechanism underlying the protective effect of rs4938723 polymorphism T > C against the risk of POAG. Rs4938723 polymorphism T > C could reduce the incidence of POAG by downregulating TP53 expression, thus leading to suppressed cell apoptosis and enhanced cell proliferation.


Assuntos
Povo Asiático/genética , Glaucoma de Ângulo Aberto/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Idoso , Apoptose , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA