Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Cell Mol Med ; 28(3): e18112, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38263865

RESUMO

The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Metiltransferases/metabolismo
2.
Arch Biochem Biophys ; 755: 109980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555043

RESUMO

BACKGROUND: Cervical cancer is a common cancer that seriously affects women's health globally. The key roles of long non-coding RNAs (lncRNAs) in the onset and development of cervical cancer have attracted much attention. Our study aims to uncover the roles of lncRNA EBLN3P and miR-29c-3p and the mechanisms by which EBLN3P and miR-29c-3p regulate malignancy in cervical cancer. METHODS: Tumor and adjacent normal tissues were collected from cervical cancer patients, and the expression of EBLN3P and miR-29c-3p were analyzed via RT-qPCR. The capacities of proliferation, migration, and invasion were assessed using CCK-8, wound healing and transwell assays. The interaction among EBLN3P, miR-29c-3p and TAF15 was determined by luciferase, RNA immunoprecipitation and RNA pull-down assays, respectively. A subcutaneous tumor xenograft mouse model was established to evaluate the functional role of EBLN3P in vivo. RESULTS: The interaction and reciprocal negative regulation between EBLN3P and miR-29c-3p were uncovered in cervical cancer cells. Likewise, EBLN3P and miR-29c-3p expression patterns in tumor tissues presented a negative association. EBLN3P knockdown weakened cell proliferation, migration and invasion, but these effects were abrogated by miR-29c-3p depletion. Mechanistically, ALKBH5 might impaired EBLN3P stability to reduce its expression. EBLN3P functioned as a competing endogenous RNA (ceRNA) for miR-29c-3p to relieve its suppression of RCC2. Besides, EBLN3P enhanced RCC2 mRNA stability via interacting with TAF15. Furthermore, silencing of EBLN3P repressed the tumor growth in mice. CONCLUSION: Altogether, lncRNA EBLN3P positively regulates RCC2 expression via competitively binding to miR-29c-3p and interacting with TAF15, thereby boosting proliferation, migration, and invasion of cervical cancer cells.

3.
Genomics ; 115(5): 110703, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37678440

RESUMO

Cancer-associated fibroblast (CAF) is an essential risk factor for ovarian cancer. Exosomes can mediate cellular communication in the tumour microenvironment, but the interaction of tumour cell exosomes with CAF is less studied in Ovarian cancer. This study identified H19/miR-29c-3p/LOXL2-COL1A1 as a ceRNA regulatory network involved in regulating tumour matrix-associated signaling pathways associated with CAF. Cellular assays demonstrated that exosomes from ovarian cancer cell line SKOV3 significantly promoted the proliferation and migration of CAF. The results of mixed transplantation tumour experiments in nude mice showed that exosomes of SKOV3 significantly promoted tumour growth. Ovarian cancer tumour-derived exosomes can regulate CAF proliferation and migration through H19/miR-29c-3p/LOXL2-COL1A1. This study reveals the regulatory role of tumour exosomes on CAF, which may provide a theoretical basis for the development of therapeutic regimens targeting fibroblasts in ovarian cancer.

4.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256016

RESUMO

Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , MicroRNAs , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Núcleo Accumbens , Metanfetamina/farmacologia , MicroRNAs/genética , Plasticidade Neuronal/genética , RNA Mensageiro , Receptores Acoplados a Proteínas G
5.
Cancer Sci ; 114(5): 1929-1942, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36644823

RESUMO

Ovarian cancer (OC) is characterized by frequent widespread peritoneal metastasis. Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote omentum metastasis in OC patients. However, the role of exosomes derived from omental CAFs in metastasis remains unclear. We isolated exosomes from primary omental normal fibroblasts (NFs) and CAFs from OC patients (NF-Exo and CAF-Exo, respectively) and assessed their effect on metastasis. In mice bearing orthotopic OC xenografts, CAF-Exo treatment led to more rapid intraperitoneal tumor dissemination and shorter animal survival. Similar results were observed in mice undergoing intraperitoneal injection of tumor cells. Among the miRNAs downregulated in CAF-Exo, miR-29c-3p in OC tissues was associated with metastasis and survival in patients. Moreover, increasing miR-29c-3p in CAF-Exo significantly weakened the metastasis-promoting effect of CAF-Exo. Based on RNA sequencing, expression assays, and luciferase assays, matrix metalloproteinase 2 (MMP2) was identified as a direct target of miR-29c-3p. These results verify the significant contribution of exosomes from omental CAFs to OC peritoneal metastasis, which could be partially due to the relief of MMP2 expression inhibition mediated by low exosomal miR-29c-3p.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Animais , Camundongos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Neoplasias Peritoneais/patologia , Omento/metabolismo , Omento/patologia , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
FASEB J ; 36(1): e22097, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935184

RESUMO

Circular RNAs (circRNAs) are an indispensable element of post-transcriptional gene regulation, influencing a variety of biological processes including myogenic differentiation; however, little is known about the function of circRNA in goat myogenic differentiation. Using RNA-sequencing data from our laboratory, we explored the influences of circUSP13, as a candidate circRNA, on myoblast differentiation since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). In in vitro experiments, circUSP13 significantly promoted differentiation and inhibited apoptosis in goat primary myoblasts. Mechanistically, circUSP13 localized with miR-29c in the cytoplasm of goat myoblasts to regulate IGF1 expression. We further demonstrated that circUSP13 sponges miR-29c, promoting IGF1 expression that upregulated the expression of MyoG and MyHC. Thus, our results identified circUSP13 as a molecular marker for breeding programs of mutton production, as well as the circUSP13-miR-29c-IGF1 axis as a potential therapeutic target for combating muscle wasting.


Assuntos
Apoptose , Diferenciação Celular , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Mioblastos/metabolismo , RNA Circular/metabolismo , Animais , Cabras
7.
Neurochem Res ; 48(2): 519-536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309937

RESUMO

Recent reports have suggested that abnormal miR-29c expression in hippocampus have been implicated in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. However, the underlying effect of miR-29c in regulating hippocampal neuronal function is not clear. In this study, HT22 cells were infected with lentivirus containing miR-29c or miR-29c sponge. Cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay kit were applied to evaluate cell viability and toxicity before and after TNF-α administration. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Hoechst 33258 staining and TUNEL assay were used to evaluate cell apoptosis. The expression of key mRNA/proteins (TNFR1, Bcl-2, Bax, TRADD, FADD, caspase-3, -8 and -9) in the apoptosis pathway was detected by PCR or WB. In addition, the protein expression of microtubule-associated protein-2 (MAP-2), nerve growth-associated protein 43 (GAP-43) and synapsin-1 (SYN-1) was detected by WB. As a result, we found that miR-29c overexpression could improve cell viability, attenuate LDH release, reduce ROS production and inhibit MMP depolarization in TNF-α-treated HT22 cells. Furthermore, miR-29c overexpression was found to decrease apoptotic rate, along with decreased expression of Bax, cleaved caspase-3, cleaved caspase-9, and increased expression of Bcl-2 in TNF-α-treated HT22 cells. However, miR-29c sponge exhibited an opposite effects. In addition, in TNF-α-treated HT22 cells, miR-29c overexpression could decrease the expressions of TNFR1, TRADD, FADD and cleaved caspase-8. However, in HT22 cells transfected with miR-29c sponge, TNF-α-induced the expressions of TNFR1, TRADD, FADD and cleaved caspase-8 was significantly exacerbated. At last, TNF-α-induced the decreased expression of MAP-2, GAP-43 and SYN-1 was reversed by miR-29c but exacerbated by miR-29c sponge. Overall, our study demonstrated that miR-29c protects against TNF-α-induced HT22 cells injury through alleviating ROS production and reduce neuronal apoptosis. Therefore, miR-29c might be a potential therapeutic agent for TNF-α accumulation and toxicity-related brain diseases.


Assuntos
MicroRNAs , Fator de Necrose Tumoral alfa , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral , Proteína X Associada a bcl-2/metabolismo , Proteína GAP-43/metabolismo , Linhagem Celular , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , MicroRNAs/metabolismo , Hipocampo/metabolismo
8.
Mol Cell Biochem ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589861

RESUMO

This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-ß (TGF-ß) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-ß expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-ß protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-ß mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-ß was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-ß in cardiomyocytes, which provides a potential target for the treatment of DCM.

9.
Neurol Sci ; 44(9): 3141-3150, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37067722

RESUMO

INTRODUCTION: The symptom of constipation has been confirmed as an early diagnose criteria for Parkinson's disease (PD). Furthermore, evidences suggest that pathogenesis of PD initiates in gut, rather than brain. If so, identifying biomarkers for constipation in PD might have potentials to assist early diagnosis and initial treatment. METHOD: We first identified that microRNA 29c (miR-29c) was dysregulated both in PD and constipation patients through bioinformatics analysis. Then, serological analysis of the expression of miR-29c in 67 PD patients with constipation (PD-C), 51 PD patients without constipation (PD-NC), and 50 healthy controls (HC) was carried out by qPCR. Demographic and clinical features were also compared. Patients in PD-C group were further classified into two groups: those with prodromal stage constipation (PD-C-Pro) (n = 36) and those with clinical stage constipation (PD-C-Clinic) (n = 31), to explore their different characteristics. RESULTS: The levels of miR-29c in PD-C group were higher than that in PD-NC group, both higher than HC group. PD-C-Pro group's miR-29c levels were statistically higher compared with PD-C-Clinic group's. What is more, PD-C group had higher scores of MDS-UPDRS-I, NMSS, NMSS3, NMSS4, NMSS6, NMSS9, SCOPA-AUT, HAMD, HAMA, RBDSQ, CSS, and PACQOL compared with PD-NC party. Relative to the PD-C-Clinic, patients in PD-C-Pro group had higher MDS-UPDRS-I, NMSS, NMSS3, HAMD, and HAMA scores, and were more likely to have RBD. CONCLUSION: Our results indicated that miR-29c seems to be an underlying cause for developing constipation in patients with PD and PD-C identifies a group of patients with more severe non-motor impairment, prominent neuropsychiatric disorders, and possible RBD conversion as well as a substandard quality of life. We further confirmed that there is a close relationship between symptoms representing the same pathological origin, especially constipation and RBD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/psicologia , Qualidade de Vida , Biomarcadores , Constipação Intestinal/etiologia
10.
Biochem Genet ; 61(2): 506-520, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35972581

RESUMO

Evidences indicate that long non-coding RNAs (lncRNAs) are closely involved and contributed to tumorigenesis and cancer progression. As a novel lncRNA, RP11-79H23.3 was found to be an anti-oncogene in bladder cancer. However, the essential roles and functions of RP11-79H23.3 in non-small-cell lung cancer (NSCLC) remains to be elucidated. Here, loss of functional assay was applied to gain insights into the functions of RP11-79H23.3 on the proliferation and metastasis capabilities of A549 and H1299 cells. Meantime, Real-time PCR was utilized to measure RP11-79H23.3 and miR-29c expression in NSCLC tissues. Dual-luciferase reporter assay, CCK8, colony formation assay, transwell and Western blot were performed to illustrate the potential molecular basis of RP11-79H23.3 in NSCLC. RP11-79H23.3 downregulation facilitated cell proliferation, migration, and invasion of NSCLC. The result of dual-luciferase reporter assay represented a direct interaction of RP11-79H23.3 with miR-29c, which suppressed miR-29c expression that showed inversely correlation in NSCLC. Moreover, RP11-79H23.3 siRNA facilitated the progression of NSCLC partially via regulating the expression of miR-29c and the activation of Wnt/ß-catenin signaling pathway. Our findings highlighted that RP11-79H23.3, served as an anti-oncogene, accelerated NSCLC progression through sequestering miR-29c, providing a promising therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica
11.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373065

RESUMO

Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC), aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set (Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1 pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional annotation, and methylation correlation analyses were performed. The miRNAs downregulated in BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional annotation of these genes revealed an over-representation of several biological processes ascribable to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing, as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.


Assuntos
MicroRNAs , Neoplasias , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Genes BRCA1 , Metilação de DNA , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Neoplasias/genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas/patologia
12.
Breast Cancer Res ; 24(1): 6, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078502

RESUMO

BACKGROUND: Ductal carcinoma in situ (DCIS) of breast is the noninvasive lesion that has propensity to progress to the malignant form. At present, it is still unknown which lesions can potentially progress to invasive forms. In this study, we aimed to identify key lncRNAs involved in DCIS growth. METHODS: We employ disease-related lncProfiler array to identify IPW in specimens of DCIS and matching control samples and validate the observations in three DCIS-non-tumorigenic cell lines. Further, we examine the mechanism of IPW action and the downstream signaling in in vitro and in vivo assays. Importantly, we screened a library containing 390 natural compounds to identify candidate compound selectively inhibiting IPW low DCIS cells. RESULTS: We identified lncRNA IPW as a novel tumor suppressor critical for inhibiting DCIS growth. Ectopic expression of IPW in DCIS cells strongly inhibited cell proliferation, colony formation and cell cycle progression while silencing IPW in primary breast cells promoted their growth. Additionally, orthotropic implantation of cells with ectopic expression of IPW exhibited decreased tumor growth in vivo. Mechanistically, IPW epigenetically enhanced miR-29c expression by promoting H3K4me3 enrichment in its promoter region. Furthermore, we identified that miR-29c negatively regulated a stemness promoting gene, ID2, and diminished self-renewal ability of DCIS cells. Importantly, we screened a library containing 390 natural compounds and identified toyocamycin as a compound that selectively inhibited the growth of DCIS with low expression of IPW, while it did not affect DCIS with high IPW expression. Toyocamycin also suppressed genes associated with self-renewal ability and inhibited DCIS growth in vivo. CONCLUSION: Our findings revealed a critical role of the IPW-miR-29c-ID2 axis in DCIS formation and suggested potential clinical use of toyocamycin for the treatment of DCIS.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , MicroRNAs , RNA Longo não Codificante , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/tratamento farmacológico , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
13.
J Cell Sci ; 133(23)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33148612

RESUMO

SMARCA2, an evolutionarily conserved catalytic ATPase subunit of SWI/SNF complexes, has been implicated in development and diseases; however, its role in mammalian ovarian function and female fertility is unknown. Here, we identified and characterized the 3'-UTR of the porcine SMARCA2 gene and identified a novel adenylate number variation. Notably, this mutation was significantly associated with sow litter size traits and SMARCA2 levels, due to its influence on the stability of SMARCA2 mRNA in ovarian granulosa cells (GCs). Immunohistochemistry and functional analysis showed that SMARCA2 is involved in the regulation of follicular atresia by inhibiting GC apoptosis. In addition, miR-29c, a pro-apoptotic factor, was identified as a functional miRNA that targets SMARCA2 in GCs and mediates regulation of SMARCA2 expression via the NORFA-SMAD4 axis. Although a potential miR-29c-responsive element was identified within NORFA, negative regulation of miR-29c expression by NORFA was not due to activity as a competing endogenous RNA. In conclusion, our findings demonstrate that SMARCA2 is a candidate gene for sow litter size traits, because it regulates follicular atresia and GC apoptosis. Additionally, we have defined a novel candidate pathway for sow fertility, the NORFA-TGFBR2-SMAD4-miR-29c-SMARCA2 pathway.This article has an associated First Person interview with the first author of the paper.


Assuntos
Apoptose , Fertilidade , Atresia Folicular , Células da Granulosa/citologia , MicroRNAs , Fatores de Transcrição/genética , Animais , Apoptose/genética , Feminino , Fertilidade/genética , MicroRNAs/genética , Suínos
14.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806204

RESUMO

microRNAs negatively regulate gene expression by blocking translation or increasing mRNA degradation. In skeletal muscle, these molecules play important roles in adaptive responses, and ongoing investigations are necessary to understand the fine-tune regulation of skeletal muscle mass. Herein we showed that skeletal muscle overexpression of miR-29c increased fiber size and force at 7 and 30 days after electrotransfer. At both time points, AKT/mTOR pathway components were downregulated, and, surprisingly, overall protein synthesis was strongly elevated at day 7, which normalized by day 30 after pCMVmiR-29c electrotransfer. These results indicate that miR-29c expression induces skeletal muscle hypertrophy and gain of function, which involves increased overall protein synthesis in spite of the deactivation of the AKT/mTOR pathway.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Biochem Biophys Res Commun ; 557: 221-227, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33887587

RESUMO

Although substantial progress has been made in early detection and treatment of GC, this disease remains a major burden worldwide. CircRNAs have potential as prognostic and diagnostic biomarkers in tumorigenesis. Therefore, we aimed to clarify the role and mechanism of circACC1 in GC cell proliferation. The expression levels of circACC1, miR-29c-3p and FOXP1 were validated in GC tissue samples and adjacent tissue samples. The impact of circACC1 and miR-29c-3p on overall survival was evaluated in GC specimens. A functional study was performed on MKN-45 and BGC823 cells transfected with different vectors. Cell proliferation was assayed by CCK-8 and colony formation assays. The interactions among circACC1, miR-29c-3p and FOXP1 were tested by RNA immunoprecipitation and luciferase reporter assays. This study demonstrated that circACC1 is upregulated in GC tissues, and its upregulation predicts poorer OS in GC patients. Upregulation of circACC1 promoted GC cell proliferation, as indicated by CCK-8 and colony formation assays. A mechanistic study revealed that the pro-oncogenic effect of circACC1 was mainly caused by binding to miR-29c-3p, thus regulating expression of its downstream target FOXP1. The circACC1/miR-29c-3p/FOXP1 network plays a key role in gastric cancer by regulating cell proliferation.


Assuntos
Proliferação de Células/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Circular/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , RNA Circular/genética , Proteínas Repressoras/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Regulação para Cima
16.
Genes Cells ; 25(6): 364-374, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32160394

RESUMO

Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p (miR-29c) exhibited anti-inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR-29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)-stimulated BV-2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR-29c in LPS-induced BV-2 cells. Over-expression of miR-29c suppressed LPS-triggered Iba-1 increment, pro-inflammatory cytokine release, and NF-кB and TXNIP/NLRP3 inflammasome activation. Silence of miR-29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR-29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR-29c inhibitor. Thus, these findings suggest that miR-29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.


Assuntos
Inflamassomos/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fatores de Transcrição/genética , Regulação para Cima
17.
Cancer Cell Int ; 21(1): 627, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838029

RESUMO

BACKGROUND: Cancer cachexia is a wasting disorder characterized by significant weight loss, and is attributed to skeletal muscle weakness. In the process of cancer development, microRNAs act as oncogenes or tumor suppressors. Moreover, they are implicated in muscle development and wasting. This study sought to explore the mechanisms and correlation between miR-29c and muscle wasting in lung cancer cachexia. METHODS: Data for expression analysis were retrieved from the Cancer Genome Atlas (TCGA) database. qRT-PCR analyses were performed to explore the expression levels of miR-29c and Leukemia Inhibitory Factor (LIF). Lewis lung carcinoma (LLC) cell line was used to establish a cachexia model to explore the functions of miR-29c and LIF in lung cancer cachexia. Furthermore, in vitro (in C2C12 myotubes) and in vivo (in LLC tumor-bearing mice) experiments were performed to explore the mechanisms of miR-29c and LIF in lung cachexia. RESULTS: Analysis of the lung cancer cachexia model showed that miR-29c was down-regulated, and its expression was negatively correlated with muscle catabolic activity. Overexpression of miR-29c mitigated the cachectic phenotype. Mechanistic studies showed that LIF was a direct target gene of miR-29c, and LIF was upregulated in vitro and in vivo. Analysis showed that LIF promoted muscle wasting through the JAK/STAT and MAP-kinase pathways. CONCLUSIONS: The findings indicated that miR-29c was negatively correlated with the cachectic phenotype, and the miR-29c-LIF axis is a potential therapeutic target for cancer cachexia.

18.
Gynecol Oncol ; 162(1): 190-199, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33875234

RESUMO

OBJECTIVE: B7-H3 is a member of the B7 family of immune checkpoint molecule. Although B7-H3 has been shown to regulate T cell-mediated peripheral immune response, whether it also correlated with NK cell exhaustion in ovarian cancer remains unclear. The purpose of this study was to explore the mechanism of B7-H3 regulating NK-cell proliferation and function. MATERIAL AND METHODS: To investigate the relationship between B7-H3 expression and the NK-cell function in ovarian cancer, human ovarian tumor tissues and cell lines were first examined the protein and mRNA expression of B7-H3 by quantitative real-time PCR (qRT-PCR), Immunohistochemistry and Western-blot assays. Then we established B7-H3 knockout cell lines and measured the cytotoxicity of NK cells on these cells by LDH release assay and Flow Cytometry. In addition, we analyzed B7-H3 in the regulation of glycolysis and glycolysis-related proteins by Glycolysis Stress Test, Glucose Consumption Assay and Western-blot. Moreover, luciferase reporter assay was used to confirm the directly regulation of miR-29c to B7-H3. Finally, we carried out in vivo experiments. RESULTS: We observed that tumor-expressed B7-H3 inhibits NK-cell function in vitro and in vivo, and is associated with glycolysis of ovarian cancer cell. Therapeutically, B7-H3 blockade prolonged the survival of SKOV3 tumor-bearing mice. In addition, miR-29c improved the anti-tumor efficacy of NK-cell by directly targeting B7-H3 in vitro were observed, but not in vivo. CONCLUSION: Our results demonstrate that miR-29c downregulates B7-H3 to inhibit NK-cell exhaustion and associated with glycolysis, which suggest that NK cells may be a new target of anti-B7-H3 therapy in ovarian cancer patients.


Assuntos
Antígenos B7/imunologia , Carcinoma Epitelial do Ovário/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Animais , Antígenos B7/biossíntese , Antígenos B7/genética , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/imunologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética
19.
Biotechnol Appl Biochem ; 68(4): 732-743, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32678466

RESUMO

Circulating miRNAs gathered much interest in cancer research as noninvasive biomarkers. The aim of this study was to analyze the expression of miR-29c and miR-149 among colorectal cancer (CRC) patients and to explore their diagnostic and prognostic potentials in relation to the clinical and pathological features. The expression levels of miR-29c and miR-149 were evaluated in the sera of 80 CRC patients, 80 colorectal adenoma (CRA) patients, and 80 healthy controls using quantitative real time polymerase chain reaction (PCR). Carcinoembryonic antigen serum levels were assayed using enzyme-linked immunosorbent assay. miR-29c and miR-149 were significantly downregulated among CRC patients compared with CRA and controls (miR-29c, 0.54 ± 0.19 vs. 0.86 ± 0.12, 0.99 ± 0.07, P < 0.001, respectively; miR-149, 0.46 ± 0.19 vs. 0.74 ± 0.012, 1.0 ± 0.22, P < 0.001, respectively). miR-29c and miR-149 significantly associated with advanced stages of CRC, tumor size, and lymphatic metastasis. By using receiver operating characteristic curve analysis, combined miR-29c and miR-149 revealed the highest diagnostic potential for CRA (area under the curve [AUC] = 0.967) from healthy controls as well as the diagnosis of CRC (AUC = 0.98) from CRA. Moreover, combined miRNAs revealed high diagnostic potential for the earlier stages of CRC compared with advanced stages (AUC = 0.96). In conclusion, combined serum miR-29c and miR-149 expression analysis established novel noninvasive biomarker for early CRC diagnosis.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Neoplásico , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Feminino , Marcadores Genéticos , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Neoplásico/sangue , RNA Neoplásico/genética
20.
J Clin Lab Anal ; 35(12): e24106, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34762771

RESUMO

BACKGROUND: Long noncoding RNA (lncRNA) TUG1 has been reported to display a pivotal role in the tumorigenesis and malignant progression of various types of cancers, including stomach adenocarcinoma (STAD). However, the contribution of aberrant expression of TUG1 and the mechanism by which it serves as a competing endogenous RNA (ceRNA) in STAD remains largely obscure. METHODS: The human STAD cell lines (MGC-803 and AGS), human normal gastric epithelial cell line (GES-1), human umbilical vein endothelial cells (HUVECs), and human embryonic kidney cells (HEK293T) were purchased and cultured to investigate the roles of TUG1 in STAD. Twenty BALB/c nude mice were purchased to establish a xenograft model to explore the roles of TUG1 in vivo. RESULTS: Bioinformatics analysis revealed that TUG1 was upregulated in STAD, of which expression was negatively and positively correlated with miR-29c-3p and VEGFA, respectively. Functional analyses indicated that TUG1 functioned as an oncogene to promote malignant behaviors (proliferation, migration, and angiogenesis) of STAD cells; whereas miR-29c-3p exerted the opposite role. Mechanistically, the interaction between miR-29c-3p with TUG1 and VEGFA was demonstrated. It was observed that miR-29c-3p could reverse the TUG1-induced promotion effect on cell proliferation, migration, and angiogenesis in STAD. Furthermore, TUG1 overexpression promoted STAD cell proliferation, metastasis, and angiogenesis, whereas VEGFA silence restored these effects, both in vitro and in vivo. CONCLUSION: This finding confirmed that lncRNA TUG1 acts as a ceRNA for miR-29c-3p to promote tumor progression and angiogenesis by upregulating VEGFA, indicating TUG1 as a therapeutic target in STAD management.


Assuntos
Adenocarcinoma/patologia , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neovascularização Patológica/genética , Neoplasias Gástricas/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA