Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686108

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease, but its pathogenesis is still unclear. Bioinformatics methods were used to explore the differentially expressed genes (DEGs) and to elucidate the pathogenesis of IPF at the genetic level. The microarray datasets GSE110147 and GSE53845 were downloaded from the Gene Expression Omnibus (GEO) database and analyzed using GEO2R to obtain the DEGs. The DEGs were further analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) pathway enrichment using the DAVID database. Then, using the STRING database and Cytoscape, a protein-protein interaction (PPI) network was created and the hub genes were selected. In addition, lung tissue from a mouse model was validated. Lastly, the network between the target microRNAs (miRNAs) and the hub genes was constructed with NetworkAnalyst. A summary of 240 genes were identified as DEGs, and functional analysis highlighted their role in cell adhesion molecules and ECM-receptor interactions in IPF. In addition, eight hub genes were selected. Four of these hub genes (VCAM1, CDH2, SPP1, and POSTN) were screened for animal validation. The IHC and RT-qPCR of lung tissue from a mouse model confirmed the results above. Then, miR-181b-5p, miR-4262, and miR-155-5p were predicted as possible key miRNAs. Eight hub genes may play a key role in the development of IPF. Four of the hub genes were validated in animal experiments. MiR-181b-5p, miR-4262, and miR-155-5p may be involved in the pathophysiological processes of IPF by interacting with hub genes.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Camundongos , Redes Reguladoras de Genes , Fibrose Pulmonar Idiopática/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional , Modelos Animais de Doenças , MicroRNAs/genética
2.
RNA Biol ; 12(4): 457-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757558

RESUMO

MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas
3.
RNA Biol ; 12(7): 690-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970317

RESUMO

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination, as for example the post-transcriptional regulation of the Polo-like kinase 1 (PLK1) by miR-22-3p and let-7e-5p.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colecalciferol/metabolismo , Células Precursoras de Granulócitos/metabolismo , Células HL-60 , Humanos , Leucemia/metabolismo , MicroRNAs/metabolismo , Monócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
4.
J Clin Exp Hepatol ; 13(1): 103-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647419

RESUMO

Alcohol-associated hepatitis (AH) is a clinical syndrome of jaundice, abdominal pain, and anorexia due to prolonged heavy alcohol intake. AH is associated with changes in gene expression, cytokines, immune response, and the gut microbiome. There are limited biomarkers to diagnose and prognosticate in AH, but several non-invasive biomarkers are emerging. In this review, clinical risk-stratifying algorithms, promising AH biomarkers like cytokeratin-18 fragments, genetic polymorphisms, and microRNAs will be reviewed.

5.
Regen Ther ; 21: 87-95, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35785044

RESUMO

Diabetic nephropathy (DN) is a severe diabetic complication and podocyte damage is a hallmark of DN. The Nucleoporin 160 (NUP160) gene was demonstrated to regulate cell proliferation and apoptosis in mouse podocytes. This study explored the possible role and mechanisms of NUP160 in high glucose-triggered podocyte injury. A rat model of DN was established by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Podocytes were treated with 33 mM high glucose. The effects of the Nup160 on DN and its mechanisms were assessed using MTT, flow cytometry, Western blot, ELISA, RT-qPCR, and luciferase reporter assays. The in vivo effects of NUP160 were analyzed by HE, PAS, and MASSON staining assays. The NUP160 level was significantly upregulated in podocytes treated with 33 mM high glucose. Functionally, NUP160 knockdown alleviated high glucose-induced apoptosis and inflammation in podocytes. Mechanistically, miR-495-3p directly targeted NUP160, and lncRNA HCG18 upregulated NUP160 by sponging miR-495-3p by acting as a ceRNA. Additionally, NUP160 overexpression reversed the effects of HCG18 knockdown in high glucose treated-podocytes. The in vivo assays indicated that NUP160 knockdown alleviated the symptoms of DN rats. NUP160 knockdown plays a key role in preventing the progression of DN, suggesting that targeting NUP160 may be a potential therapeutic strategy for DN treatment.

6.
Regen Ther ; 21: 322-330, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36110972

RESUMO

Introduction: Partial necrosis of skin flaps is still a substantial problem in plastic and reconstructive surgery. In this study, the role of miR-590-3p in adipose-derived stem cells (ADSCs) transplantation in improving the survival of skin flap in a mouse model was delved into. Method: An abdominal perforator flap model was established in mice. The histopathological examination of mice skin tissues after ADSCs transplantation was implemented using Hematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) or immunofluorescence (IF) staining was utilized to assess the PCNA or CD31 levels. The concentrations of VEGFA in the culture medium were quantified using a VEGFA ELISA kit. Result: The damage of tissue in the skin flap was dramatically relieved by ADSCs transplantation. MiR-590-3p overexpression notably suppressed, while miR-590-3p knockdown facilitated skin flap survival by regulating PCNA, VCAM-1, and VEGFA levels. MiR-590-3p targeted VEGFA to regulate its expression. The knockdown of VEGFA significantly inhibited, while overexpression of VEGFA notably promoted the survival of skin flap. Conclusion: ADSCs transplantation promotes skin flap survival by boosting angiogenesis. The miR-590-3p/VEGFA axis modulates skin flap angiogenesis and survival in ADSCs. These results reveal that interfering with miR-590-3p in ADSCs could potentially be a novel therapeutic target for the improvement of skin flap survival.

7.
Int J Cardiol Heart Vasc ; 43: 101134, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36389268

RESUMO

Background: Anthracycline cardiotoxicity is a significant clinical challenge. Biomarkers to improve risk stratification and identify early cardiac injury are required. Objectives: The purpose of this pilot study was to prospectively characterize anthracycline cardiotoxicity using cardiovascular magnetic resonance (CMR), echocardiography and MicroRNAs (MiRNAs), and identify baseline predictors of LVEF recovery. Methods: Twenty-four patients (age 56 range 18-75 years; 42 % female) with haematological malignancy scheduled to receive anthracycline chemotherapy (median dose 272 mg/m2 doxorubicin equivalent) were recruited and evaluated at three timepoints (baseline, completion of chemotherapy, and 6 months after completion of chemotherapy) with multiparametric 1.5 T CMR, echocardiography and circulating miRNAs sequencing. Results: Seventeen complete datasets were obtained. CMR left ventricular ejection fraction (LVEF) fell significantly between baseline and completion of chemotherapy (61 ± 3 vs 53 ± 3 %, p < 0.001), before recovering significantly at 6-month follow-up (55 ± 3 %, p = 0.018). Similar results were observed for 3D echocardiography-derived LVEF and CMR-derived longitudinal, circumferential and radial feature-tracking strain. Patients were divided into tertiles according to LVEF recovery (poor recovery, partial recovery, good recovery). CMR-derived mitral annular plane systolic excursion (MAPSE) was significantly different at baseline in patients exhibiting poor LVEF recovery (11.7 ± 1.5 mm) in comparison to partial recovery (13.7 ± 2.7 mm), and good recovery (15.7 ± 3.1 mm; p = 0.028). Furthermore, baseline miRNA-181-5p and miRNA-221-3p expression were significantly higher in this group. T2 mapping increased significantly on completion of chemotherapy compared to baseline (54.0 ± 4.6 to 57.8 ± 4.9 ms, p = 0.001), but was not predictive of LVEF recovery. No changes to LV mass, extracellular volume fraction, T1 mapping or late gadolinium enhancement were observed. Conclusions: Baseline CMR-derived MAPSE, circulating miRNA-181-5p, and miRNA-221-3p were associated with poor recovery of LVEF 6 months after completion of anthracycline chemotherapy, suggesting their potential predictive role in this context. T2 mapping increased significantly on completion of chemotherapy but was not predictive of LVEF recovery.

8.
Gene Rep ; 28: 101641, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875722

RESUMO

Coronavirus disease 2019 (COVID-19) is regarded as a challenge in health system. Several studies have assessed the immune-related aspect of this disorder to identify the host-related factors that affect the course of COVID-19. microRNAs (miRNAs) as potent regulators of immune responses have gained much attention in this regard. Recent studies have shown aberrant expression of miRNAs in COVID-19 in association with disease course. Differentially expressed miRNAs have been enriched in pathways related with inflammation and antiviral immune response. miRNAs have also been regarded as potential therapeutic targets in COVID-19, particularly for management of pathological consequences of COVID-19. In the current review, we summarize the data about dysregulation of miRNAs in COVID-19.

9.
Regen Ther ; 21: 477-485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36313394

RESUMO

Background: Congenital pseudarthrosis of the tibia (CPT) is an uncommon congenital deformity and a special subtype of bone nonunion. The lower ability of osteogenic differentiation in CPT-derived mesenchymal stem cells (MSCs) could result in progression of CPT, and miR-30a could inhibit osteogenic differentiation. However, the role of miR-30a in CPT-derived MSCs remains unclear. Methods: The osteogenic differentiation of CPT-derived MSCs treated with the miR-30a inhibitor was tested by Alizarin Red S staining and alkaline phosphatase (ALP) activity. The expression levels of protein and mRNA were assessed by Western blot or quantitative reverse transcription-polymerase chain reaction (RT-qPCR), respectively. The interplay between miR-30a and HOXD8 was investigated by a dual-luciferase reporter assay. Chromatin immunoprecipitation (ChIP) was conducted to assess the binding relationship between HOXD8 and RUNX2 promoter. Results: CPT-derived MSCs showed a lower ability of osteogenic differentiation than normal MSCs. miR-30a increased in CPT-derived MSCs, and miR-30a downregulation promoted the osteogenic differentiation of CPT-derived MSCs. Meanwhile, HOXD8 is a direct target for miR-30a, and HOXD8 could transcriptionally activate RUNX2. In addition, miR-30a could inhibit the osteogenic differentiation of CPT-derived MSCs by negatively regulating HOXD8. Conclusion: miR-30a inhibits the osteogenic differentiation of CPT-derived MSCs by targeting HOXD8. Thus, this study might supply a novel strategy against CPT.

10.
J Adv Res ; 37: 169-184, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499057

RESUMO

Introduction: The prognosis for cervical cancer (CC) patients with lymph node metastasis (LNM) is extremely poor. Lipid droplets (LDs) have a pivotal role in promoting tumor metastasis. The crosstalk mechanism between LDs and LNM modulated in CC remains largely unknown. Objectives: This study aimed to construct a miRNA-dependent progonostic model for CC patients and investigate whether miR-532-5p has a biological impact on LNM by regualting LDs accumulation. Methods: LASSO-Cox regression was applied to establish a prognostic prediction model. miR-532-5p had the lowest P-value in RNA expression (P < 0.001) and prognostic prediction (P < 0.0001) and was selected for further study. The functional role of the prognostic miR-532-5p-correlated competing endogenous RNA (ceRNA) network was investigated to clarify the crosstalk between LDs and LNM. The underlying mechanism was determined using site-directed mutagenesis, dual luciferase reporter assays, RNA immunoprecipitation assays, and rescue experiments. A xenograft LNM model was established to evaluate the effect of miR-532-5p and orlistat combination therapy on tumor growth and LNM. Results: A novel 5-miRNAs prognostic signature was constructed to better predict the prognosis of CC patient. Further study demonstrated that miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating LDs accumulation. Interestingly, we also found that LDs accumulation promoted cell metastasis in vitro. Mechanistically, we demonstrated a miR-532-5p-correlated ceRNA network in which LINC01410 was bound directly to miR-532-5p and effectively functioned as miR-532-5p sponge to disinhibit its target gene-fatty acid synthase (FASN). Combined therapy with miR-532-5p and FASN inhibitor-orlistat further inhibited tumor growth and LNM in vivo. Conclusion: Our findings highlight a LD accumulation-dependent mechanism of miR-532-5p-modulated LNM and support treatment with miR-532-5p/orlistat as novel strategy for treating patients with LNM in CC.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Gotículas Lipídicas/metabolismo , Metástase Linfática , MicroRNAs/genética , MicroRNAs/metabolismo , Orlistate , Prognóstico , Neoplasias do Colo do Útero/genética
11.
J Ginseng Res ; 46(3): 376-386, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600767

RESUMO

Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 3'UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

12.
JHEP Rep ; 3(6): 100368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712934

RESUMO

BACKGROUND & AIMS: Treatment with non-selective beta-blockers (NSBBs) reduces the risk of ascites, which is the most common decompensating event in cirrhosis. This study aimed to assess the ability of a serum microRNA (miRNA) signature to predict ascites formation and the hemodynamic response to NSBBs in compensated cirrhosis. METHODS: Serum levels of miR-452-5p, miR-429, miR-885-5p, miR-181b-5p, and miR-122-5p were analyzed in patients with compensated cirrhosis (N = 105). Hepatic venous pressure gradient (HVPG) was measured at baseline, after intravenous propranolol, and 1 year after randomization to NSBBs (n = 52) or placebo (n = 53) (PREDESCI trial). miRNAs were analyzed at baseline and at 1 year. RESULTS: Nineteen patients (18%) developed ascites, of whom 17 developed ascites after 1 year. miR-181b-5p levels at 1 year, but not at baseline, were higher in patients that developed ascites. The AUC of miR-181b-5p at 1 year to predict ascites was 0.7 (95% CI 0.59-0.78). miR-429 levels were lower at baseline in acute HVPG responders to NSBBs (AUC 0.65; 95% CI, 0.53-0.76), but levels at baseline and at 1 year were not associated with the HVPG response to NSBBs at 1 year. CONCLUSIONS: Serum miR-181b-5p is a promising non-invasive biomarker to identify patients with compensated cirrhosis at risk of ascites development. LAY SUMMARY: Ascites marks the transition from the compensated to decompensated stage in cirrhosis and indicates a worsening in prognosis. There are currently no easily accessible tools to identify patients with compensated cirrhosis at risk of developing ascites. We evaluated the levels of novel molecules termed microRNAs in the blood of patients with compensated cirrhosis and observed that miR-181b-5p can predict which patients are going to develop ascites.

13.
Genes Dis ; 8(2): 157-167, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997162

RESUMO

Thousands of long non-coding RNAs (lncRNAs) have been discovered in human genomes by gene chip, next-generation sequencing, and/or other methods in recent years, which represent a significant subset of the universal genes involved in a wide range of biological functions. An abnormal expression of lncRNAs is associated with the growth, invasion, and metastasis of various types of human cancers, including hepatocellular carcinoma (HCC), which is an aggressive, highly malignant, and invasive tumor, and a poor prognosis in China. With a more in-depth understanding of lncRNA research for HCC and the emergence of new molecular-targeted therapies, the diagnosis, treatment, and prognosis of HCC will be considerably improved. Therefore, this review is expected to provide recommendations and directions for future lncRNA research for HCC.

14.
Comput Struct Biotechnol J ; 19: 4941-4953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527198

RESUMO

MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization. Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III, and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656 and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration, and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked transforming growth factor ß, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to androgen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is characterized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent deletions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four distinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic guidance.

15.
Comput Struct Biotechnol J ; 19: 910-928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598105

RESUMO

Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.

16.
Acta Pharm Sin B ; 11(7): 1767-1788, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386320

RESUMO

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.

17.
JHEP Rep ; 3(4): 100300, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34159305

RESUMO

Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.

18.
J Bone Oncol ; 26: 100337, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33240786

RESUMO

Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.

19.
Osteoarthr Cartil Open ; 1(3-4): 100018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36475003

RESUMO

Objective: MicroRNAs (miRNAs) are being launched as biomarkers for various diseases, but a robust biomarker for articular cartilage pathology has yet to be discovered. Here we evaluate plasma extracellular vesicle (EV) miRNAs as possible biomarkers for osteoarthritis (OA). Method: We compared miRNA levels found in plasma EVs from patients with OA with controls without OA using next generation sequencing (NGS) technique. The patient and control pairs were matched for age, gender and body mass index. Results: 23 pairs of patients and controls were included. Patients with OA differed significantly from controls in both clinical and radiological assessment of OA. We identified 177 canonical miRNAs in plasma EVs, but found no difference in miRNA levels between the two groups. Interestingly, the concentration of each miRNA in plasma EVs showed minimal difference between the participants, suggesting that the release of miRNAs in EVs from cells within the various organs is a tightly controlled process. Conclusion: This is the first study using NGS in search of a miRNA biomarker in plasma EVs in OA. The levels of each plasma EVs miRNA were surprisingly similar for all participants. No plasma EVs miRNA can be used as a biomarker for OA.

20.
Regen Ther ; 14: 322-329, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32467829

RESUMO

INTRODUCTION: Ropivacaine has been regularly used because of its good anesthetic and analgesic effects, but it may exert neurotoxic effects on neurocyte. Dexmedetomidine has presented special advantages in the fields of neuroprotection, and it also could improve peripheral nerve block combining with ropivacaine. However, if dexmedetomidine could repair neurocyte injury induced by ropivacaine, and the specific mechanism remain unclear. METHODS: Western blotting and qRT-PCR were applied for measuring expression of protein and mRNA, respectively. Flow cytometry was used for assessing apoptosis. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and colony formation assays. Transwell assay was applied to measure the migration and invasion of cells. Dual luciferase reporter assay was applied for confirming the binding site between microRNA-381 (miR-381) and Leucine-rich repeat C4 protein (LRRC4). RESULTS: The viability of PC12 cells increased with raising the concentration of dexmedetomidine (0 µM, 10 µM, 50 µM, 100 µM). Dexmedetomidine reversed role of ropivacaine (0 mM, 0.1 mM, 0.5 mM, 1 mM) by upragulating the expression of miR-381 and suppressing the expression of LRRC4 in PC12 cells. miR-381 can directly interact with target gene LRRC4 and negatively regulate its expression. Dexmedetomidine promoted the proliferation, migration, and invasion and inhibited apoptosis of PC12 cells by suppressing LRRC4 via up-regulating the expressions of miR-381 and further activated SDF-1/CXCR4 signaling pathway. CONCLUSIONS: Dexmedetomidine could protect PC12 cells from ropivacaine injury through miR-381/LRRC4/SDF-1/CXCR4 signaling pathway. This study may provide new therapeutic strategy targeting miR-381/LRRC4/SDF-1/CXCR4 signaling pathway about the prevention of ropivacaine induced neurocyte injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA