Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 30(6): 2176-2185, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143959

RESUMO

Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Envelhecimento , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Progressão da Doença , Cães , Distrofina/genética , Edição de Genes/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
2.
Mol Ther ; 29(3): 1070-1085, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33160075

RESUMO

Gene editing is often touted as a permanent method for correcting mutations, but its long-term benefits in Duchenne muscular dystrophy (DMD) may depend on sufficiently high editing efficiencies to halt muscle degeneration. Here, we explored the persistence of dystrophin expression following recombinant adeno-associated virus serotype 6 (rAAV6):CRISPR-Cas9-mediated multi-exon deletion/reframing in systemically injected 2- and 11-week-old dystrophic mice and show that induction of low dystrophin levels persists for several months in cardiomyocytes but not in skeletal muscles, where myofibers remain susceptible to necrosis and regeneration. Whereas gene-correction efficiency in both muscle types was enhanced with increased ratios of guide RNA (gRNA)-to-nuclease vectors, obtaining high dystrophin levels in skeletal muscles via multi-exon deletion remained challenging. In contrast, when AAV-microdystrophin was codelivered with editing components, long-term gene-edited dystrophins persisted in both muscle types. These results suggest that the high rate of necrosis and regeneration in skeletal muscles, compared with the relative stability of dystrophic cardiomyocytes, caused the rapid loss of edited genomes. Consequently, stable dystrophin expression in DMD skeletal muscles will require either highly efficient gene editing or the use of cotreatments that decrease skeletal muscle degeneration.


Assuntos
Distrofina/genética , Edição de Genes , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/prevenção & controle , Distrofia Muscular de Duchenne/prevenção & controle , Miocárdio/metabolismo , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Guia de Cinetoplastídeos
3.
Mol Ther ; 26(10): 2337-2356, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30093306

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.


Assuntos
Dependovirus/genética , Distrofina/uso terapêutico , Terapia Genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Vetores Genéticos/uso terapêutico , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia
4.
Inn Med (Heidelb) ; 65(6): 617-623, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38748280

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe monogenic hereditary disease with early manifestation and a progressive course. Treatment options have so far been limited. Gene therapy opens up new options for DMD patients. OBJECTIVES: Against the background of a further death following DMD gene therapy, the side effects and risks of the gene therapeutics already approved or undergoing clinical trials will be evaluated and alternative gene therapeutics will be described. Based thereon, the future of DMD gene therapy will be discussed. CURRENT DATA: For the first time, in June 2023, delandistrogene moxeparvovec (SRP-9001), a gene replacement therapy based on an adeno-associated virus (AAV) vector, was approved in the USA for children aged 4-5 years with DMD. Other promising gene therapies are in preclinical development or clinical trials, including CRISPR/Cas9-mediated strategies to restore dystrophin expression. Two deaths following DMD gene therapy with high-dose AAV vectors were attributed to AAV-mediated immune responses. The pre-existing disease underlying the therapy is most likely involved in the fatal AAV toxicity. CONCLUSIONS: Although gene therapy applications of AAV vectors are generally considered safe, the systemic administration of high vector doses can lead to severe side effects with a potentially fatal outcome in individual patients, especially after activation of the immune system. In the future, new methods for immunosuppression, reduction of AAV dose and alternative vectors will therefore increasingly come to the fore.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Humanos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/efeitos adversos , Pré-Escolar , Criança , Masculino
5.
Expert Opin Investig Drugs ; 33(3): 201-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291016

RESUMO

INTRODUCTION: Current therapies are unable to cure Duchenne muscular dystrophy (DMD), a severe and common form of muscular dystrophy, and instead aim to delay disease progression. Several treatments currently in phase I trials could increase the number of therapeutic options available to patients. AREAS COVERED: This review aims to provide an overview of current treatments undergoing or having recently undergone early-stage trials. Several exon-skipping and gene therapy approaches are currently being investigated at the clinical stage to address an unmet need for DMD treatments. This article also covers Phase I trials from the last 5 years that involve inhibitors, small molecules, a purified synthetic flavanol, a cell-based therapy, and repurposed cardiac or tumor medications. EXPERT OPINION: With antisense oligonucleotide (AON) treatments making up the majority of conditionally approved DMD therapies, most of the clinical trials occurring within the last 5 years have also evaluated exon-skipping AONs. The approval of Elevidys, a micro-dystrophin therapy, is reflected in a recent trend toward gene transfer therapies in phase I DMD clinical trials, but their safety and efficacy are being established in this phase of development. Other Phase I clinical-stage approaches are diverse, but have a range in efficacy, safety, and endpoint measures.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Terapia Genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA , Ensaios Clínicos como Assunto
6.
Hum Gene Ther ; 34(9-10): 449-458, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36515166

RESUMO

Adeno-associated virus (AAV)-mediated systemic micro-dystrophin (µDys) therapy is currently in clinical trials. The hope is to permanently improve the life quality of Duchenne muscular dystrophy (DMD) patients. Numerous preclinical studies have been conducted to support these trials. However, none examined whether a single therapy at a young age can lead to lifelong disease amelioration. To address this critical question, we injected 1 × 1013 vg particles/mouse of an AAV serotype-9 µDys vector to 3-month-old mdx mice through the tail vein. Therapeutic outcomes were evaluated at the age of 11 months (adulthood, 8 months postinjection) and 21 months (terminal age, 18 months postinjection). Immunostaining and Western blot showed saturated supraphysiological levels of µDys expression in skeletal muscle and heart till the end of the study. Treatment significantly improved grip force and treadmill running, and significantly reduced the serum creatine kinase level at both time points. Since cardiac death is a major threat in late-stage patients, we evaluated cardiac electrophysiology and hemodynamics by ECG and the closed-chest cardiac catheter assay, respectively. Significant improvements were observed in these assays. Importantly, many ECG and hemodynamic parameters (heart rate, PR interval, QRS duration, QTc interval, end-diastolic/systolic volume, dP/dt max and min, max pressure, and ejection fraction) were completely normalized at 21 months of age. Our results have provided direct evidence that a single systemic AAV µDys therapy has the potential to provide lifelong benefits in the murine DMD model.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Dependovirus/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Terapia Genética/métodos
7.
Curr Gene Ther ; 23(4): 304-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032509

RESUMO

AIM: Duchenne Muscular Dystrophy (DMD) results in a deficiency of dystrophin expression in patient muscle fibers, leading to progressive muscle degeneration. Treatment of DMD has undertaken current transformation with the advancement of novel gene therapy and molecular biology techniques, which are secure, well-tolerated, and effective therapeutic approaches. INTRODUCTION: DMD gene therapies have mainly focused on young DMD patients as in vivo animal model trials have been performed in 0-1-month DMD mice. However, it has not yet been answered how micro-dystrophin encoding lentiviral treatment affects Dystrophin expression and DMD symptoms in 10-month mdx mice. METHODS: We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviralmicro- Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level. RESULTS: Here, we showed that the micro-dystrophin transgene transfers intramuscularly and intraperitoneally in late-stage dmd-mdx-4cv mice restored dystrophin expression in the skeletal and cardiac muscle (p <0.001). Furthermore, motor performance analysis, including hanging and tracking tests, improved statistically significantly after the treatment (p <0.05). CONCLUSION: Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Terapia Genética/métodos , Modelos Animais de Doenças , Músculo Esquelético
8.
Neurotherapeutics ; 20(6): 1669-1681, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673849

RESUMO

Duchenne muscular dystrophy (DMD) is the most common childhood form of muscular dystrophy. It is caused by mutations in the DMD gene, leading to reduced or absent expression of the dystrophin protein. Clinically, this results in loss of ambulation, cardiomyopathy, respiratory failure, and eventually death. In the past decades, the use of corticosteroids has slowed down the disease progression. More recently, the development of genetically mediated therapies has emerged as the most promising treatment for DMD. These strategies include exon skipping with antisense oligonucleotides, gene replacement therapy with adeno-associated virus, and gene editing with CRISPR (clustered regularly interspaced short palindromic repeats) technology. In this review, we highlight the most up-to-date therapeutic progresses in the field, with emphasis on past and recent experiences, as well as the latest clinical results of DMD micro-dystrophin gene therapy. Additionally, we discuss the lessons learned along the way and the challenges encountered, all of which have helped advance the field, with the potential to finally alleviate such a devastating disease.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Criança , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Distrofina/metabolismo , Edição de Genes/métodos , Éxons , Terapia Genética/métodos
9.
Hum Gene Ther ; 34(9-10): 459-470, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36310439

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins (µDys) are currently in clinical trials. They all carry H1 and H4. In this study, we investigated whether these two hinges are essential for µDy function in murine DMD models. Three otherwise identical µDys were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ΔH1 (without H1), and ΔH4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent µDys expression in total muscle lysate. However, only H1/H4 and ΔH1 showed correct sarcolemmal localization. ΔH4 mainly existed as sarcoplasmic aggregates. H1/H4 and ΔH1, but not ΔH4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ΔH1, but not by ΔH4. Next, we compared H1/H4 and ΔH1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months postinjection, H1/H4 significantly outperformed ΔH1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable electrocardiography improvements. We conclude that H4 is essential for µDys function and H1 facilitates force production. Our findings will help develop next-generation µDys gene therapy.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Terapia Genética
10.
Mol Ther Methods Clin Dev ; 28: 344-354, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36874243

RESUMO

Micro-dystrophin gene replacement therapies for Duchenne muscular dystrophy (DMD) are currently in clinical trials, but have not been thoroughly investigated for their efficacy on cardiomyopathy progression to heart failure. We previously validated Fiona/dystrophin-utrophin-deficient (dko) mice as a DMD cardiomyopathy model that progresses to reduced ejection fraction indicative of heart failure. Adeno-associated viral (AAV) vector delivery of an early generation micro-dystrophin prevented cardiac pathology and functional decline through 1 year of age in this new model. We now show that gene therapy using a micro-dystrophin optimized for skeletal muscle efficacy (AAV-µDys5), and which is currently in a clinical trial, is able to fully prevent cardiac pathology and cardiac strain abnormalities and maintain normal (>45%) ejection fraction through 18 months of age in Fiona/dko mice. Early treatment with AAV-µDys5 prevents inflammation and fibrosis in Fiona/dko hearts. Collagen in cardiac fibrotic scars becomes more tightly packed from 12 to 18 months in Fiona/dko mice, but the area of fibrosis containing tenascin C does not change. Increased tight collagen correlates with unexpected improvements in Fiona/dko whole-heart function that maintain impaired cardiac strain and strain rate. This study supports micro-dystrophin gene therapy as a promising intervention for preventing DMD cardiomyopathy progression.

11.
Biol Open ; 12(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37670674

RESUMO

Robust expression of shortened, functional dystrophin provided impetus to develop adeno-associated virus (AAV)-based constructs for clinical application. Because several cassettes are being tested in clinical trials, this study compared the efficacies of four shortened dystrophin-promoter combinations with implications for outcomes in clinical trials: MHCK7 or MCK promoter with a shortened dystrophin transgene containing the N-terminus and spectrin repeats R1, R2, R3 and R24 (rAAVrh74.MHCK7.micro-dystrophin and rAAVrh74.MCK.micro-dystrophin, respectively); shortened dystrophin construct containing the neuronal nitric oxide (nNOS) binding site (rAAVrh74.MHCK7.DV.mini-dystrophin); and shortened dystrophin containing the C-terminus (rAAVrh74.MHCK7.micro-dystrophin.Cterm). Functional and histological benefit were examined at 4 weeks following intramuscular delivery in mdx mice. rAAVrh74.MHCK7.micro-dystrophin provided the most robust transgene expression and significantly increased specific force output in the tibialis anterior muscle. Muscle environment was normalized (i.e. reductions in central nucleation), indicating functional and histological advantages of rAAVrh74.MHCK7.micro-dystrophin. Thus, promoter choice and transgene design are critical for optimal dystrophin expression/distribution for maximal functional improvement.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Dependovirus/genética , Citoesqueleto de Actina , Modelos Animais de Doenças
12.
Hum Gene Ther ; 32(7-8): 375-389, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397205

RESUMO

Duchenne muscular dystrophy (DMD) is a rare, X-linked, fatal, degenerative neuromuscular disease caused by mutations in the DMD gene. More than 2,000 mutations of the DMD gene are responsible for progressive loss of muscle strength, loss of ambulation, and generally respiratory and cardiac failure by age 30. Recently, gene transfer therapy has received widespread interest as a disease-modifying treatment for all patients with DMD. We designed an adeno-associated virus vector (rAAVrh74) containing a codon-optimized human micro-dystrophin transgene driven by a skeletal and cardiac muscle-specific promoter, MHCK7. To test the efficacy of rAAVrh74.MHCK7.micro-dystrophin, we evaluated systemic injections in mdx (dystrophin-null) mice at low (2 × 1012 vector genome [vg] total dose, 8 × 1013 vg/kg), intermediate (6 × 1012 vg total dose, 2 × 1014 vg/kg), and high doses (1.2 × 1013 vg total dose, 6 × 1014 vg/kg). Three months posttreatment, specific force increased in the diaphragm (DIA) and tibialis anterior muscle, with intermediate and high doses eliciting force outputs at wild-type (WT) levels. Histological improvement included reductions in fibrosis and normalization of myofiber size, specifically in the DIA, where results for low and intermediate doses were not significantly different from the WT. Significant reduction in central nucleation was also observed, although complete normalization to WT was not seen. No vector-associated toxicity was reported either by clinical or organ-specific laboratory assessments or following formal histopathology. The findings in this preclinical study provided proof of principle for safety and efficacy of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin at high vector titers, supporting initiation of a Phase I/II safety study in boys with DMD.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Distrofina/genética , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
13.
Redox Biol ; 37: 101730, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002761

RESUMO

The highly ordered cortical microtubule lattice of skeletal muscle is disorganized in dystrophin-deficient mdx mice. Implicated mechanisms include loss of dystrophin binding, altered α-tubulin posttranslational modification, expression of a ß-tubulin involved in regeneration, and reactive oxygen species (ROS). Here we show that the transverse microtubules in mdx muscle expressing miniaturized dystrophins are rapidly lost after eccentric contraction. Analysis of mdx lines expressing different dystrophin constructs demonstrate that spectrin-like repeats R4-15 and R20-23 were required for mechanically stable microtubules. Microtubule loss was prevented by the non-specific antioxidant N-acetylcysteine while inhibition of NADPH oxidase 2 had only a partial effect, suggesting that ROS from multiple sources mediate the rapid loss of transverse microtubules after eccentric contraction. Finally, ablation of α-dystrobrevin, ß- or γ-cytoplasmic actin phenocopied the transverse microtubule instability of miniaturized dystrophins. Our data demonstrate that multiple dystrophin domains, α-dystrobrevin and cytoplasmic actins are necessary for mechanically stable microtubules.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Oxirredução
14.
Mol Ther Methods Clin Dev ; 18: 664-678, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32775499

RESUMO

Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.

15.
Expert Opin Biol Ther ; 20(3): 263-274, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031420

RESUMO

Introduction: The development of adeno-associated virus (AAV) vectors as safe vehicles for in vivo delivery of therapeutic genes has been a major milestone in the advancement of gene therapy, enabling a promising strategy for ameliorating a wide range of diseases, including Duchenne muscular dystrophy (DMD).Areas covered: Based on experience with the development of a gene transfer therapy agent for DMD, we discuss ways in which gene therapy for rare disease challenges traditional clinical development paradigms, and recommend a step-wise approach for design and evaluation to support broader applicability of gene therapy.Expert opinion: The gene therapy development approach should intentionally design the therapeutic construct and the clinical study to systematically evaluate agent delivery, safety, and efficacy. Rigorous preclinical work is essential for establishing an effective gene delivery platform and determining the efficacious dose. Clinical studies should thoroughly evaluate transduction, on-target transgene expression at the tissue and cellular level, and functional efficacy.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/terapia , Ensaios Clínicos como Assunto , Dependovirus/genética , Distrofina/uso terapêutico , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Distrofia Muscular de Duchenne/genética , Avaliação de Resultados em Cuidados de Saúde , Bibliotecas de Moléculas Pequenas/uso terapêutico
16.
Hum Gene Ther ; 29(7): 733-736, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29463117

RESUMO

Whole-body systemic gene therapy is likely the most effective way to reduce greatly the disease burden of Duchenne muscular dystrophy (DMD), an X-linked inherited muscle disease that leads to premature death in early adulthood. Genetically, DMD is due to null mutation of the dystrophin gene, one of the largest genes in the genome. Recent studies have shown highly promising improvements in animal models with intravascular delivery of the engineered micro-dystrophin gene by adeno-associated virus (AAV). Several human trials are now started to advance AAV micro-dystrophin therapy to DMD patients. This is a historical moment for the entire field. Results from these trials will shape the future of neuromuscular disease gene therapy.


Assuntos
Distrofina/uso terapêutico , Terapia Genética , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Ensaios Clínicos como Assunto , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutação
17.
Mol Ther Methods Clin Dev ; 6: 216-230, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28932757

RESUMO

Micro-dystrophins are highly promising candidates for treating Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. Here, we report robust disease rescue in the severe DBA/2J-mdx model with a neuronal nitric oxide synthase (nNOS)-binding micro-dystrophin vector. 2 × 1013 vector genome particles/mouse of the vector were delivered intravenously to 10-week-old mice and were evaluated at 6 months of age. Saturated micro-dystrophin expression was detected in all skeletal muscles and the heart and restored the dystrophin-associated glycoprotein complex and nNOS. In skeletal muscle, therapy substantially reduced fibrosis and calcification and significantly attenuated inflammation. Centronucleation was significantly decreased in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles but not in the quadriceps. Muscle function was normalized in the TA and significantly improved in the EDL muscle. Heart histology and function were also evaluated. Consistent with the literature, DBA/2J-mdx mice showed myocardial calcification and fibrosis and cardiac hemodynamics was compromised. Surprisingly, similar myocardial pathology and hemodynamic defects were detected in control DBA/2J mice. As a result, interpretation of the cardiac data proved difficult due to the confounding phenotype in control DBA/2J mice. Our results support further development of this microgene vector for clinical translation. Further, DBA/2J-mdx mice are not good models for Duchenne cardiomyopathy.

18.
Expert Opin Orphan Drugs ; 3(11): 1255-1266, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594599

RESUMO

INTRODUCTION: Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. AREAS COVERED: Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. EXPERT OPINION: Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA