RESUMO
Although nitrogen (N) enrichment is known to threaten the temporal stability of aboveground net primary productivity, it remains unclear how it alters that of belowground microbial abundance and whether its impact can be regulated by grassland degradation. Using data from N enrichment experiments at temperate grasslands with no, moderate, severe, and extreme degradation degrees, we quantified the temporal stability of soil microbial abundance (hereafter 'microbial community stability') using the ratio of the mean quantitative PCR to its standard deviation over 4 years. Both bacterial and fungal community stability sharply decreased when N input exceeded 30 g N m-2 year-1 in non-degraded grasslands, whereas a reduction in this threshold occurred in degraded grasslands. Microbial species diversity, species asynchrony, and species associations jointly altered microbial community stability. Interestingly, the linkages between plant and microbial community stability were strengthened in degraded grasslands, suggesting that plants and soil microbes might depend on each other to keep stable communities in harsh environments. Our findings highlighted the importance of grassland degradation in regulating the responses of microbial community stability to N enrichment and provided experimental evidence for understanding the relationships between plant and microbial community stability.
Assuntos
Microbiota , Nitrogênio , Nitrogênio/análise , Pradaria , Solo , Plantas , EcossistemaRESUMO
Changes in gut microbiome composition have been implicated in the pathogenesis of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our objective was to explore the microbial abundance in patients with GvHD after allo-HSCT. We conducted a single-center, prospective study in patients who underwent allo-HSCT and developed grade II or higher acute GvHD and/or moderate or severe chronic GvHD, to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected fecal specimens at -2 to +2 (T1), +11 to +17 (T2), +25 to +30 (T3), +90 (T4), and +180 (T5) days to assess changes in gut microbiota, with day 0 being the day of allo-HSCT. We included 20 allo-HSCT recipients in the study. Compared with timepoint T1, at timepoint T4 we found a significant decrease in the abundance of Proteobacteria phylum (14.22% at T1 vs. 4.07% at T4, p = 0.01) and Enterobacteriaceae family (13.3% at T1 vs. <0.05% at T4, p < 0.05), as well as a significant increase in Enterococcus species (0.1% at T1 vs. 12.8% at T4, p < 0.05) in patients who developed acute GvHD. Regarding patients who developed chronic GvHD after allo-HSCT, there was a significant reduction in the abundance of Eurobactereaceae family (1.32% at T1 vs. 0.53% at T4, p < 0.05) and Roseruria genus (3.97% at T1 vs. 0.09% at T4, p < 0.05) at T4 compared with T1. Alpha and beta diversity analyses did not reveal a difference in the abundance of bacteria at the genus level in GvHD patients at T4 compared with T1. Our study reinforces results from previous studies regarding changes in gut microbiota in patients with acute GvHD and provides new data regarding the gut microbiome changes in chronic GvHD. Future studies will need to incorporate clinical parameters in their analyses to establish their association with specific changes in gut microbiota in patients with GvHD after allo-HSCT.
Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Doença Crônica , Fezes/microbiologia , Transplante Homólogo/efeitos adversos , Doença Aguda , Adulto Jovem , Idoso , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Síndrome de Bronquiolite ObliteranteRESUMO
Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of â¼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (â ¡) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.
Assuntos
Microbiota , Rios , Rios/microbiologia , Águas Residuárias , Bactérias , Qualidade da ÁguaRESUMO
Anammox granular sludge processes are an attractive and efficient biotechnology in the field of wastewater treatment. In this study, the stratification patterns of anammox granular sludge bed (GSB) at steady states were illustrated and its relationship to microbial activity and community were systematically investigated under different nitrogen loading rates (NLRs). Morphological observation and quantitive particle size distribution analysis demonstrated that the GSB at low NLR was mainly composed of micro and fine granules with a big difference between bottom and top sludge layers. But at high NLR, the volumetric mean diameter (VMD) of GSB increased with the size distribution width (Span) declined forming a more homogeneous and coarse granules population. The particle size distribution parameters of GSB could be fast characterized by the optical lightness (L*) parameter (r = -0.771, p < 0.01, n = 16) and held a significant correlation with the nitrogen removal rate (NRR) of anammox system (r > 0.9, p < 0.05). The microbial spatial distribution patterns of different sludge layers were further investigated by high-throughput sequencing. The microbial community α-diversity index and microbial abundance matrix proved that the community structure tend to coverage at high NLR. Significant difference of the relative abundance of microbial community was detected under different NLRs. The VMD of GSB held a significant correlation with the relative abundance of AnAOB (r = 0.556, p < 0.01, n = 16) and other common accompanying bacteria (Denitratisoma and Chloroflexi). This study proved that the apparent particle size distribution patterns of GSB could be a potential auxiliary indicator to reflect the microbial activity and community, which can facilitate the innovative process monitor of anammox system based on visual features.
Assuntos
Reatores Biológicos , Esgotos , Oxidação Anaeróbia da Amônia , Anaerobiose , Reatores Biológicos/microbiologia , Nitrogênio , Oxirredução , Tamanho da Partícula , Esgotos/químicaRESUMO
Arsenic (As) metabolism genes are generally present in soils, but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes (ars) including arsR, acr3, arsB, arsC, arsM, arsI, arsP, and arsH as well as energy-generating As respiratory oxidation (aioA) and reduction (arrA) genes. Somewhat unexpectedly, the relative DNA abundances and diversities of ars, aioA, and arrA genes were not significantly different between low and high (â¼10 versus â¼100 mg kg-1) As soils. Compared to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars gene abundance only when its concentration was higher than 410 mg kg-1. In contrast, metatranscriptomics revealed that relative to low-As soils, high-As soils showed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community wide as opposed to taxon specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil or other environments should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level; thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.
Assuntos
Arsênio/metabolismo , Genes Arqueais , Genes Bacterianos , Microbiologia do Solo , Poluentes do Solo/metabolismo , Archaea/genética , Archaea/metabolismo , Arsênio/análise , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Metais Pesados/análise , Oryza , RNA Ribossômico 16S , Poluentes do Solo/análiseRESUMO
Recent studies have found that the microbiome in both gut and mouth are associated with diseases of the gut, including cancer. If resident microbes could be found to exhibit consistent patterns between the mouth and gut, disease status could potentially be assessed non-invasively through profiling of oral samples. Currently, there exists no generally applicable method to test for such associations. Here we present a Bayesian framework to identify microbes that exhibit consistent patterns between body sites, with respect to a phenotypic variable. For a given operational taxonomic unit (OTU), a Bayesian regression model is used to obtain Markov-Chain Monte Carlo estimates of abundance among strata, calculate a correlation statistic, and conduct a formal test based on its posterior distribution. Extensive simulation studies demonstrate overall viability of the approach, and provide information on what factors affect its performance. Applying our method to a dataset containing oral and gut microbiome samples from 77 pancreatic cancer patients revealed several OTUs exhibiting consistent patterns between gut and mouth with respect to disease subtype. Our method is well powered for modest sample sizes and moderate strength of association and can be flexibly extended to other research settings using any currently established Bayesian analysis programs.
Assuntos
Teorema de Bayes , Tamanho Corporal , Microbiota , Algoritmos , Simulação por Computador , HumanosRESUMO
Positive modulation of gut microbiota in laying chickens may offer a strategy for reduction of Salmonella Typhimurium shedding and production of safer poultry products. In the current study, the caecal luminal microbiota of laying chicks was studied using 16S rRNA amplicon sequencing on DNA obtained from the chicks that were offered supplementation with commercial probiotics, synbiotics and/or Salmonella Typhimurium challenge. The load of Salmonella Typhimurium in various organs was quantified. Irrespective of the probiotics and synbiotics supplementation and Salmonella Typhimurium challenge, caecal microbiota was dominated by 22 distinct bacterial genera and 14 families that clustered into Actinobacteria, Proteobacteria and Firmicutes at phylum level. Taken together, probiotics and synbiotics supplementation increased (false discovery rate; FDR < 0.05) the abundance of Ruminococcus, Trabulsiella, Bifidobacterium, Holdemania and Oscillospira, indicating their role in maintaining gut health through lowering luminal pH and digestion of complex polysaccharides. Salmonella Typhimurium challenge decreased the abundance of Trabulsiella, Oscillospira, Holdemania, Coprococcus, Bifidobacterium and Lactobacillus and increased Klebsiella and Escherichia, indicating its role in caecal dysbiosis. Although probiotics and synbiotics supplementation positively modulated the caecal microbiota, they were not effective in significantly (P > 0.05) reducing Salmonella Typhimurium load in caecal tissue and invasion into vital organs such as liver and spleen. The early colonisation of laying chick caeca by probiotics and synbiotics had the potential to positively influence luminal microbiota; however, the microbial abundance and diversity were not sufficient to significantly reduce the shedding of Salmonella Typhimurium in faeces or invasion into internal organs during this study.
Assuntos
Derrame de Bactérias , Ceco/microbiologia , Microbiota , Probióticos/administração & dosagem , Salmonelose Animal/microbiologia , Simbióticos/administração & dosagem , Ração Animal/microbiologia , Animais , Carga Bacteriana , Galinhas/microbiologia , Fezes/microbiologia , Feminino , Fígado/microbiologia , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Baço/microbiologiaRESUMO
Biochar has been widely applied to paddy fields to improve soil fertility, crop productivity and carbon sequestration, thereby leading to variations in the CO2 exchange between the paddy fields under flooding irrigation and the atmosphere, as indicated by many previous reports. However, few relevant reports have focused on paddy fields under water-saving irrigation. This study conducted a field experiment to investigate the effects of three biochar addition rates (0, 20 and 40 t ha-1) on the CO2 exchange between paddy fields under controlled irrigation (CI, a water-saving irrigation technique) and the atmosphere in the Taihu Lake region of Southeast China. Our results showed that biochar addition increased the paddy field ecosystem respiration (Reco) and the soil respiration rate (Rs) in the CI paddy fields. And biochar application increased the total CO2 emissions and the total soil CO2 emissions, especially at a rate of 40 t ha-1. In contrast, gross primary productivity (GPP) was decreased and the net ecosystem exchange of CO2 (NEE) was increased with biochar addition. However, biochar addition at a rate of 20 t ha-1 significantly increased the total CO2 absorption and the net CO2 absorption of the CI paddy fields (p < 0.05), whereas biochar addition at a rate of 40 t ha-1 had no effect on the total CO2 absorption and decreased the total net CO2 absorption. At the same time, biochar addition significantly increased soil catalase, invertase and urease activities and contributed substantially to the increase in soil invertase activity. In addition, the soil bacterial, fungal and actinomycetal abundances were evidently increased with biochar addition, of which the soil fungal abundance showed the greatest increase. A high correlation was observed between soil catalase and invertase activities and soil microbial abundance. Reco was highly correlated with air and soil temperatures and soil enzyme activity. A significant quadratic polynomial correlation was observed between GPP and leaf area index (p < 0.01). The combination of biochar addition at a rate of 20 t ha-1 and water-saving irrigation has the potential to increase the size of the carbon sink and promote soil enzyme and microbial activities in paddy field ecosystems.
Assuntos
Oryza , Água , Agricultura , Dióxido de Carbono/análise , Carvão Vegetal , China , Ecossistema , SoloRESUMO
Surface mining activities, despite their benefits, lead to the deterioration of local and regional environmental quality and play a role in global ecosystem pollution. This research aimed to estimate the culturable microbial population structure at five locations near the opencast coal mine "Kakanj" (Bosnia and Herzegovina) via agar plate and phospholipid fatty acids (PLFA) method and to establish its relationship to the physical and chemical properties of soil. Using the ICP-OES method, the heavy metal pollution of all examined locations (overburden, former grass yard, forest, arable soil, and greenhouse) was observed. Substantial variations among the sites regarding the most expressed indicators of heavy metal pollution were noted; Cr, Pb, Ni, and Cu content ranged from 63.17 to 524.47, 20.57 to 349.47, 139.13 to 2785.67, and 25.97 to 458.73 mg/kg, respectively. In the overburden sample, considerable low microbial activity was detected; the bacterial count was approximately 6- to 18-fold lower in comparison with the other samples. PLFA analysis showed the reduction of microbial diversity, reflected through the prevalence of normal and branched saturated fatty acids, their ratio (ranged from 0.92 to 7.13), and the absence of fungal marker 18:2ω6 fatty acid. The principal component analysis showed a strong negative impact of heavy metals Na and B on main microbial and PLFA profiles. In contrast, stock of main chemical parameters, including Ca, K, Fe, and pH, was positively correlated with the microbial community structure.
Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Bósnia e Herzegóvina , Carvão Mineral , Monitoramento Ambiental , Solo , Microbiologia do SoloRESUMO
Transgenic Bt-rice is rice that has been genetically modified to produce insecticidal proteins (Cry1Ab/Ac) within the plant. Rice straw is incorporated into paddy soils after harvest for fertilization or to improve the soil structure. The incorporation of straw from transgenic Bt-rice may pose risks to the paddy soil system. The decomposition of Bt-rice straw and degradation of Cry1Ab/Ac proteins from the straw were investigated under laboratory conditions. In addition, effects of the incorporation with chopped rice straw on microbial communities in differently textured paddy soils were studied. The results indicated that the incorporation of straw from transgenic Bt-rice might have a slight influence on soil respiration and CH4 emissions in two paddy soils, i.e. the Silt Loam soil and the Silty Clay soil. Differences were also observed in the cumulative emissions of CO2 between the two amended paddy soils in addition to the well-known increase in emissions of both CO2 and CH4 due to straw incorporation. The Cry1Ab/Ac proteins from straw of transgenic Bt-rice were degraded in paddy soils. The rate of decline in the concentration of Cry1Ab/Ac proteins was different in the two soils. After 29â¯d of incubation, 61% and 42% of initial Cry1Ab/Ac proteins were detected in the silt loam and silty clay, respectively. As a result of the presence of the rice straw, the abundance of bacteria, archaea, and total cells were increased in two soils. The numbers of bacteria and total cells were 6.4% and 11.5% higher in the silt loam amended with straw of Bt-rice than non-Bt-rice, respectively. The silty clay displayed a similar trend as the silt loam.
Assuntos
Oryza , Solo , Bactérias , Microbiologia do SoloRESUMO
OBJECTIVE: The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. METHODS: Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen (NH3-N), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. RESULTS: After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest NH3-N concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p< 0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. CONCLUSION: The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation.
RESUMO
The realization that anthropogenic nitrogen (N) deposition is causing significant environmental change in many ecosystems has led to lower emissions of reactive N and deposition rates in many regions. However, the impacts of N deposition on terrestrial ecosystems can be long lasting, with significant inertia in the return of the biota and biogeochemical processes to baseline levels. To better understand patterns of recovery and the factors that may contribute to slow or no responses following declines in N deposition, we followed plant species composition, microbial abundance, N cycling rates, soil pH, and pools of NO3- and extractable cations in an impacted alpine ecosystem following cessation of 12-yr experiment increasing N deposition rates by 0, 20, 40, and 60 kg N·ha-1 ·yr-1 . Simulated N deposition had resulted in a tripling in the cover of the nitrophilic species Carex rupestris, while the dominant sedge Kobresia myosuroides had decreased by more than half at the highest N input level. In addition, nitrification rates were elevated, soil extractable magnesium (Mg2+ ) and pH decreased, and aluminum (Al3+ ) and manganese (Mn2+ ) were elevated at the highest N treatment inputs. Over the nine years following cessation of N additions to the impacted plots, only the cover of the nitrophilic C. rupestris showed any recovery to prior levels. Abundances of both bacteria and fungi were lower with N addition in both treatment and recovery plots. Rates of nitrification and pools of NO3- remained elevated in the recovery plots, likely contributing to the lack of biotic response to the cessation of N inputs. In addition, nutrient base cations (Ca2+ and Mg2+ ) and soil pH remained depressed, and the toxic metal cations (Al3+ and Mn2+ ) remained elevated in recovery plots, also potentially influencing biotic recovery. These results emphasize the importance of considering long-term environmental impacts of N deposition associated with legacy effects, such as elevated N cycling and losses of base cations, in determining environmental standards such as the metrics used for critical loads.
Assuntos
Conservação dos Recursos Naturais , Cyperaceae/fisiologia , Pradaria , Ciclo do Nitrogênio , Solo/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiologia do SoloRESUMO
The rapid expansion of Phragmites australis in brackish marshes of the East Coast of the USA has drawn much attention, because it may change vegetation diversity and ecosystem functions. In particular, higher primary production of Phragmites than that of other native species such as Spartina patens and Schoenoplectus americanus has been noted, suggesting possible changes in carbon storage potential in salt marshes. To better understand the long-term effect of the invasion of Phragmites on carbon storage, however, information on decomposition rates of soil organic matter is essential. To address this issue, we compared microbial enzyme activities and microbial functional gene abundances (fungi, laccase, denitrifier, and methanogens) in three depths of soils with three different plants in a brackish marsh in Maryland, USA. Laccase and phenol oxidase activities were measured to assess the decomposition potential of recalcitrant carbon while ß-glucosidase activity was determined as proxy for cellulose decomposition rate. Microbial activities near the surface (0-15 cm) were the highest in Spartina-community sites followed by Phragmites- and Schoenoplectus-community sites. A comparison of stable isotopic signatures (δ13C and δ15N) of soils and plant leaves suggests that deep organic carbon in the soils mainly originated from Spartina, and only the surface soils may have been influenced by Phragmites litter. In contrast, fungal, laccase, and denitrifier abundances determined by real-time qPCR exhibited no discernible patterns among the surface soils of the three vegetation types. However, the abundance of methanogens was higher in the deep Phragmites-community soil. Therefore, Phragmites invasion will accelerate CH4 emission by greater CH4 production in deep soils with abundant methanogens, although enzymatic mechanisms revealed the potential for larger C accumulation by Phragmites invasion in salt marshes in the east coast of the USA.
Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/análise , Proteínas Fúngicas/análise , Fungos/enzimologia , Poaceae/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Espécies Introduzidas , Lacase/análise , Lacase/metabolismo , Monofenol Mono-Oxigenase/análise , Monofenol Mono-Oxigenase/metabolismo , Áreas Alagadas , beta-Glucosidase/análise , beta-Glucosidase/metabolismoRESUMO
Previously, it was believed that the prokaryote communities of typical 'low-microbial abundance' (LMA) or 'non-symbiont harboring' sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.
Assuntos
Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Recifes de Corais , Ecossistema , Filogenia , Poríferos/classificação , TaiwanRESUMO
Bioturbation and bioirrigation induced by burrowing macrofauna are recognized as important processes in aquatic sediment since macrofaunal activities lead to the alteration of sediment characteristics. However, there is a lack of information on how macrofauna influence microbial abundance and extracellular enzyme activity in mangrove sediment. In this study, the environmental parameters, extracellular enzyme activities, and microbial abundance were determined and their relationships were explored. Sediment samples were taken from the surface (S) and lower layer (L) without burrow, as well as crab burrow wall (W) and bottom of crab burrow (B) located at the Mai Po Nature Reserve, Hong Kong. The results showed that the burrowing crabs could enhance the activities of oxidase and hydrolases. The highest activities of phenol oxidase and acid phosphatase were generally observed in B sediment, while the highest activity of N-acetyl-glucosaminidase was found in W sediment. The enzymatic stoichiometry indicated that the crab-affected sediment had similar microbial nitrogen (N) and phosphorous (P) availability relative to carbon (C), lower than S but higher than L sediment. Furthermore, it was found that the highest abundance of both bacteria and fungi was shown in S sediment, and B sediment presented the lowest abundance. Moreover, the concentrations of phosphorus and soluble phenolics in crab-affected sediment were almost higher than the non-affected sediment. The alterations of phenolics, C/P and N/P ratios as well as undetermined environmental factors by the activities of crabs might be the main reasons for the changes of enzyme activity and microbial abundance. Finally, due to the important role of phenol oxidase and hydrolases in sediment organic matter (SOM) decomposition, it is necessary to take macrofaunal activities into consideration when estimating the C budget in mangrove ecosystem in the future.
Assuntos
Braquiúros/fisiologia , Microbiologia Ambiental , Enzimas/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Fosfatase Ácida/análise , Animais , Carbono , Ecossistema , Monitoramento Ambiental , Ensaios Enzimáticos , Hong Kong , Hidrolases/análise , Nitrogênio , Oxirredutases/análise , Fenóis , Fósforo , Áreas AlagadasRESUMO
Mesotrione (2-[4-(methylsulfonyl)-2-nithobenzoyl]-1, 3-cyclohexanedione) is a selective triketone herbicide that has been widely used in corn production for the past 15 years. However, its potential for risk to soil ecosystems is poorly documented. The present study investigated the soil enzyme activity and soil microbial community responses to a 20 days' mesotrione exposure at doses of 0.1, 1.0 and 5.0â¯mg/kg. On days 2, 5, 10 and 20, activities of soil ß-glucosidase, urease and acid phosphatase, soil microbe abundances, soil microbial community structure and abundance of the AOA-amoA and AOB-amoA genes were measured. Results showed that activities of urease and acid phosphatase were relatively stable, with no difference found between the mesotrione-treated group and control at the end of exposure. But ß-glucosidase activity was reduced in the 5.0â¯mg/kg mesotrione treatment. In the 1.0 and 5.0â¯mg/kg mesotrione-treated soil, abundance of bacteria, fungi and actinomycetes all were reduced. In the 0.1â¯mg/kg mesotrione-treated soil, only fungi abundance was reduced by the end of the exposure. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed soil microbial community structure could be affected by mesotrione at all experimental doses, and microbial diversity declined slightly after mesotrione exposure. Abundance of AOA-amoA and AOB-amoA genes were reduced markedly in 1.0 and 5.0â¯mg/kg mesotrione-treated soil. The present study suggests that mesotrione at higher doses might induce negative impacts on soil microbes, a finding which merits additional research and which should be accounted for when application of this herbicide is considered.
Assuntos
Cicloexanonas/toxicidade , Herbicidas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Fosfatase Ácida/análise , Biodiversidade , Cicloexanonas/análise , Herbicidas/análise , Solo/química , Poluentes do Solo/análise , Urease/análise , beta-Glucosidase/análiseRESUMO
Sponges offer an excellent model to investigate invertebrate-microorganism interactions. Furthermore, bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to characterize the bacteria inhabiting a genus of sponges, Oscarella, and their potentiality for antimicrobial production. Bacterial isolates were recovered from different Oscarella specimens, among which 337 were phylogenetically identified. The culturable community was dominated by Proteobacteria and Firmicutes, and Vibrio was the most frequently isolated genus, followed by Shewanella. When tested for antimicrobial production, bacteria of the 12 genera isolated were capable of producing antimicrobial substances. The majority of strains were involved in antagonistic interactions and inhibitory activities were also observed against bacteria of medical importance. It was more pronounced in some isolated genera (Acinetobacter, Bacillus, Photobacterium, Shewanella and Vibrio). These findings suggest that chemical antagonism could play a significant role in shaping bacterial communities within Oscarella, a genus classified as low-microbial abundance sponge. Moreover, the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing therapies to treat infections caused by multidrug-resistant bacteria. This study was the first to investigate the diversity and antagonistic activity of bacteria isolated from Oscarella spp. It highlights the biotechnological potential of sponge-associated bacteria.
Assuntos
Anti-Infecciosos/metabolismo , Antibiose/fisiologia , Firmicutes/metabolismo , Poríferos/microbiologia , Proteobactérias/metabolismo , Shewanella/metabolismo , Animais , Biodiversidade , Brasil , Firmicutes/classificação , Firmicutes/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Shewanella/classificação , Shewanella/isolamento & purificaçãoRESUMO
Biobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide. Its dissipation and metabolism was determined in a biobed packing material inoculated with an iprodione-degrading Arthrobacter strain C1 (bioaugmentation, treatments B+C1) and/or seeded with ryegrass (rhizosphere-assisted biodegradation, treatments B+P). The impact of those strategies on the activity and composition of the microbial community was determined. Bioaugmentation accelerated the dissipation of iprodione which was further enhanced in the bioaugmented, rhizosphere-assisted treatment (treatment B+P+C1, Half-life (DT50) = 3.4 d), compared to the non-bioaugmented, non rhizosphere-assisted control (DT50 = 9.5 d, treatment B). Bioaugmentation resulted in the earlier formation of intermediate formation of metabolites I (3,5-dichlorophenyl-carboxamide), II (3,5-dichlorophenylurea acetate) and 3,5-dichloroaniline (3,5-DCA). The latter was further dissipated by the indigenous microbial community. Acid phosphatase (AP) and ß-glucosidase (GLU) were temporarily stimulated in rhizosphere-assisted treatments, whereas a stimulation of the fluorescein diacetate (FDA) hydrolytic activity in the bioaugmented treatments coincided with the hydrolysis of iprodione. q-PCR showed that changes in the abundance of alpha-proteobacteria and firmicutes was driven by the presence of rhizosphere while bioaugmentation had no significant effect.
Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Biodegradação Ambiental , Hidantoínas/metabolismo , Praguicidas/metabolismo , Rizosfera , Gerenciamento de Resíduos/métodos , Fosfatase Ácida/metabolismo , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacocinética , Compostos de Anilina/metabolismo , Arthrobacter/metabolismo , Fazendas , Meia-Vida , Hidantoínas/farmacocinética , Lolium/metabolismo , Praguicidas/farmacocinética , beta-Glucosidase/metabolismoRESUMO
The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.
Assuntos
Gases/farmacologia , Efeito Estufa , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Microbiologia do Solo , Agricultura , Biodiversidade , Biomassa , Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Ecologia , Monitoramento Ambiental , Ativação Enzimática , Gases/química , Metano/química , Metano/farmacologia , Consórcios Microbianos/genética , Óxido Nitroso/química , Óxido Nitroso/farmacologia , Estações do Ano , Solo/química , Áreas AlagadasRESUMO
Biochar has attracted more and more attention due to its essential role in adsorbing pollutants, improving soil fertility, and modifying greenhouse gas emission. However, the influences of biochar on extracellular enzyme activity and microbial abundance are still lack and debatable. Currently, there is no information about the impact of biochar on the function of mangrove ecosystems. Therefore, we explored the effects of biochar on extracellular enzyme activity and microbial abundance in subtropical mangrove sediment, and further estimated the contribution of biochar to C sequestration. In this study, sediments were amended with 0 (control), 0.5, 1.0 and 2.0% of biochar and incubated at 25 °C for 90 days. After incubation, enzyme activities, microbial abundance and the increased percentage of sediment organic C content were determined. Both increase (phenol oxidase and ß-glucosidase) and decrease (peroxidase, N-acetyl-glucosaminidase and acid phosphatase) of enzyme activities were observed in biochar treatments, but only peroxidase activity showed statistical significance (at least p < 0.01) compared to the control. Moreover, the activities of all enzymes tested were significantly related to the content of biochar addition (at least p < 0.05). On the other hand, bacterial and fungal abundance in biochar treatments were remarkably lower than control (p < 0.001), and the significantly negative relationship (p < 0.05) between bacterial abundance and the content of biochar was found. Additionally, the increased percentage of organic C gradually increased with biochar addition rate, which provided evidence for applying biochar to mitigate climate change. Given the importance of microorganisms and enzyme activities in sediment organic matter decomposition, the increased C sequestration might be explained by the large decrease of microbial abundance and enzyme activity after biochar intervention.