Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 25 Suppl 1: S172-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078825

RESUMO

Power conversion efficiency of p-i-n type macrocrystalline silicon (µc-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type µc-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 µm) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.


Assuntos
Eletricidade , Elétrons , Modelos Teóricos , Silício/química , Luz Solar , Absorção de Radiação , Simulação por Computador , Difusão , Hidrogênio
2.
Materials (Basel) ; 14(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832349

RESUMO

Hydrogenated microcrystalline silicon (µc-Si:H) and epitaxial silicon (epi-Si) films have been produced from SiF4, H2 and Ar mixtures by plasma enhanced chemical vapor deposition (PECVD) at 200 °C. Here, both films were produced using identical deposition conditions, to determine if the conditions for producing µc-Si with the largest crystalline fraction (XC), will also result in epi-Si films that encompass the best quality and largest crystalline silicon (c-Si) fraction. Both characteristics are of importance for the development of thin film transistors (TFTs), thin film solar cells and novel 3D devices since epi-Si films can be grown or etched in a selective manner. Therefore, we have distinguished that the H2/SiF4 ratio affects the XC of µc-Si, the c-Si fraction in epi-Si films, and the structure of the epi-Si/c-Si interface. Raman and UV-Vis ellipsometry were used to evaluate the crystalline volume fraction (Xc) and composition of the deposited layers, while the structure of the films were inspected by high resolution transmission electron microscopy (HRTEM). Notably, the conditions for producing µc-Si with the largest XC are different in comparison to the fabrication conditions of epi-Si films with the best quality and largest c-Si fraction.

3.
Materials (Basel) ; 6(1): 291-298, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28809309

RESUMO

For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-µm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the JSC but decreased the VOC, and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper.

4.
J Magn Reson ; 234: 1-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23820089

RESUMO

Pulsed multi-frequency electrically detected magnetic resonance (EDMR) at X-, Q- and W-Band (9.7, 34, and 94GHz) was applied to investigate paramagnetic centers in microcrystalline silicon thin-film solar cells under illumination. The EDMR spectra are decomposed into resonances of conduction band tail states (e states) and phosphorus donor states (P states) from the amorphous layer and localized states near the conduction band (CE states) in the microcrystalline layer. The e resonance has a symmetric profile at all three frequencies, whereas the CE resonance reveals an asymmetry especially at W-band. This is suggested to be due to a size distribution of Si crystallites in the microcrystalline material. A gain in spectral resolution for the e and CE resonances at high fields and frequencies demonstrates the advantages of high-field EDMR for investigating devices of disordered Si. The microwave frequency independence of the EDMR spectra indicates that a spin-dependent process independent of thermal spin-polarization is responsible for the EDMR signals observed at X-, Q- and W-band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA