RESUMO
In order to study the dynamics of marine phytoplankton communities in response to anticipated in temperature and CO2, a shipboard continuous culture experiment (Ecostat) was conducted. The experiment involved simulations under current atmospheric CO2 concentrations (400 ppm) and projected year-2100 CO2 levels (1000 ppm), as well as varying temperature under present (22 °C) versus increased temperature (26 °C) in the Yellow Sea during the summer of 2020. The results showed that both the increased pCO2 and temperature had significant effects on microphytoplankton and picophytoplankton, with the warming effect proving to be more significant. The different responses of various species to acidification and warming and their coupling effect led to the changes in microphytoplankton and picophytoplankton community structure. Elevated temperature and greenhouse treatments promoted the growth of dominant diatoms and Synechococcus, such as Guinardia flaccida and Pseudo-nitzschia delicatissima. This phenomenons widened the ecological niche, and the changes in the growth patterns of dominant species consequently influenced the content of cellular elements. Mantel's analysis further demonstrated that both warming and greenhouse promoted the growth of diatoms and Synechococcus. Projections of marine phytoplankton community trends by the end of the century based on Growth Rate Ratio (GRR), indicated that not only would species with GRR < 1 decrease, but also numerous species with growth rates >1 at elevated pCO2 levels would be ousted from competition. This experiment demonstrates the need to investigate whether extended exposure to increased pCO2 and temperature over more extended time scales would similarly induce shifts in the biological and biogeochemical dynamics of the Yellow Sea.
Assuntos
Diatomáceas , Fitoplâncton , Fitoplâncton/fisiologia , Temperatura , Dióxido de Carbono , Diatomáceas/fisiologia , Ecossistema , Água do Mar/químicaRESUMO
We studied the influence of anomalous meteorological and hydrological conditions that occurred in the Gulf of Trieste from March 2006 to February 2007 on phytoplankton structure and function. We computed monthly mean (or median) air temperature, total precipitation, wind speed, river discharge, seawater temperature, salinity, photosynthetic available radiation (PAR), cyanobacteria, nano- and microphytoplankton abundances during the study year and compared them to climatological (1999-2014 for PAR; 1999-2007 for nanophytoplankton; 1998-2015 for the other variables) mean/median data. We then related the cyanobacteria (0.2-2⯵m), nano- (2-20⯵m) and microphytoplankton (20-200⯵m) of the study year to inorganic nutrient concentrations. Median river inputs in October and November were 9- and 15-fold lower, respectively, than the time series medians, with consequent high salinity from May to November (up to +1.26 compared to the climatological data). Monthly mean seawater temperatures were lower than the climatological values (-2.95⯰C at the surface) from March to August 2006 and higher (+2.15⯰C at the surface) from September to February 2007. Reductions in freshwater input and nutrient depletion were likely responsible for a decrease in microphytoplankton (median annual abundance over 60% lower than the climatologic median) and cyanobacteria (up to 47% lower than the climatology). Significant seasonal differences in cyanobacteria and microphytoplankton abundances (RANOSIMâ¯=â¯0.52; pâ¯<â¯0.05), as well as in seawater temperature and salinity (RANOSIMâ¯=â¯0.73; pâ¯<â¯0.05) between the study period and the climatology were highlighted. The late spring diatom bloom was not reflected in high photosynthetic rates whereas an unusually high primary production was estimated in November (7.11⯱â¯1.01⯵gCâ¯L-1â¯h-1), when a mucilage event occurred due to very stable atmospheric and oceanographic conditions. The typical seasonal succession of pelagic phototrophs (micro-, nanophytoplankton and cyanobacteria) was altered since an exceptional cyanobacteria bloom first developed in April, followed by a delayed diatom bloom in May.
Assuntos
Monitoramento Ambiental , Fitoplâncton/fisiologia , Cianobactérias , Itália , Rios/química , Estações do Ano , Água do Mar/químicaRESUMO
During the RV-ARAON cruise, a comparative study on the biosynthesis of mycosporine-like amino acids (MAAs) was conducted for the size-fractionated phytoplankton of the Beaufort Sea (Arctic). The MAAs contents in the micro-phytoplankton community (>20⯵m size) is considerably higher than that observed in the nano- (20-2⯵m size) and pico-phytoplankton (<2⯵m size) communities. The micro-phytoplankton of the Mackenzie Shelf had a relatively higher Chlorophyll a (Chl a) concentration. Considering the total phytoplankton community, the MAAs concentration as well as net production of individual MAAs (such as shinorine and palythine) were higher at the Mackenzie Shelf rather than at the sites located beyond the Beaufort Sea; precisely, the highest net production rates of shinorine and palythine were 0.211 (±0.02) ng C L-1 d-1 and 0.136 (±0.001) ng C L-1 d-1 respectively (No other MAAs were detected). The micro-phytoplankton used around 0.5% of the total carbon uptake for the synthesis of MAAs. Compared to the smaller phytoplankton community, the micro-phytoplankton utilized more of their energy for the biosynthesis of MAAs; on the other hand, nano- and pico-phytoplankton focused on cellular activity and had poor biosynthesis of MAAs. This clearly indicates the phytoplankton size-dependent variation in the biosynthesis of MAA in the natural phytoplankton community. This study revealed the environmental adaptation of the various sizes of phytoplankton community as well as their physiological response in the Arctic Beaufort Sea.
Assuntos
Aminoácidos/biossíntese , Fitoplâncton/metabolismo , Regiões Árticas , Carbono/metabolismo , Clorofila/análise , Clorofila A , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimentoRESUMO
Phytoplankton drives primary productivity in marine pelagic systems. This is also true for the oligotrophic waters in coral reefs, where natural and anthropogenic sources of nutrients can alter pelagic trophic webs. In this study, microphytoplankton assemblages were characterized for the first time in relation to expected coral spawning dates in the Caribbean. A hierarchical experimental design was used to examine these assemblages in Los Roques archipelago, Venezuela, at various temporal and spatial scales for spawning events in both 2007 and 2008. At four reefs, superficial water samples were taken daily for 9 days after the full moon of August, including days before, during and after the expected days of coral spawning. Microphytoplankton assemblages comprised 100 microalgae taxa at up to 50 cells per mL (mean ± 8 SD) and showed temporal and spatial variations related to the coral spawning only in 2007. However, chlorophyll a concentrations increased during and after the spawning events in both years, and this was better matched with analyses of higher taxonomical groups (diatoms, cyanophytes and dinoflagellates), that also varied in relation to spawning times in 2007 and 2008, but asynchronously among reefs. Heterotrophic and mixotrophic dinoflagellates increased in abundance, correlating with a decrease of the diatom Cerataulina pelagica and an increase of the diatom Rhizosolenia imbricata. These variations occurred during and after the coral spawning event for some reefs in 2007. For the first time, a fresh-water cyanobacteria species of Anabaena was ephemerally found (only 3 days) in the archipelago, at reefs closest to human settlements. Variability among reefs in relation to spawning times indicated that reef-specific processes such as water residence time, re-mineralization rates, and benthic-pelagic coupling can be relevant to the observed patterns. These results suggest an important role of microheterotrophic grazers in re-mineralization of organic matter in coral reef waters and highlight the importance of assessing compositional changes of larger size fractions of the phytoplankton when evaluating primary productivity and nutrient fluxes.
RESUMO
The Costa Rica Dome (CRD) is a unique open-ocean upwelling system, with picophytoplankton dominance of phytoplankton biomass and suppressed diatoms, yet paradoxically high export of biogenic silica. As a part of Flux and Zinc Experiments cruise in summer (June-July 2010), we conducted shipboard incubation experiments in the CRD to examine the potential roles of Si, Zn, Fe and light as regulating factors of phytoplankton biomass and community structure. Estimates of photosynthetic quantum yields revealed an extremely stressed phytoplankton population that responded positively to additions of silicic acid, iron and zinc and higher light conditions. Size-fractioned Chl a yielded the surprising result that picophytoplankton, as well as larger phytoplankton, responded most to treatments with added silicic acid incubated at high incident light (HL + Si). The combination of Si and HL also led to increases in cell sizes of picoplankton, notably in Synechococcus. Such a response, coupled with the recent discovery of significant intracellular accumulation of Si in some picophytoplankton, suggests that small phytoplankton could play a potentially important role in Si cycling in the CRD, which may help to explain its peculiar export characteristics.
RESUMO
The role of carbonic anhydrase (CA) in inorganic carbon acquisition (dissolved inorganic carbon, DIC) was examined in Alboran Sea phytoplankton assemblages. The study area was characterized by a relatively high variability in nutrient concentration and in abundance and taxonomic composition of phytoplankton. Therefore, the relationship between environmental variability and capacity for using HCO3 (-) via external CA (eCA) was examined. Acetazolamide (AZ, an inhibitor of eCA) inhibited the primary productivity (PP) in 50% of the samples, with inhibition percentages ranging from 13% to 60%. The AZ effect was more prominent in the samples that exhibited PP >1 mg C · m(-3) · h(-1) , indicating that the contribution of eCA to the DIC photosynthetic flux was irrelevant at low PP. The inhibition of primary productivity by AZ was significantly correlated to the abundance of diatoms. However, there was no a relationship between AZ effect and CO2 partial pressure (pCO2 ) or nutrient concentration, indicating that the variability in the PP percentage supported by eCA was mainly due to differences in taxonomic composition of the phytoplankton assemblages. Ethoxyzolamide (EZ, an inhibitor of both external and internal CA) affected 13 of 14 analyzed samples, with PP inhibition percentages varying from 50% to 95%. The effects of AZ and EZ were partially reversed by doubling DIC concentration. These results imply that CA activity (external and/or internal) was involved in inorganic carbon acquisition in most the samples. However, EZ effect was not correlated with pCO2 or taxonomic composition of the phytoplankton.
RESUMO
This research was carried out to assess phytoplankton diversity, distribution and ecology on the Pernambuco Continental Shelf and Oceanic region (lat. 7º 33' 00" S to 8º 41' 50" S and long. 34º 04' 47" W to 35º 01' 20" W). Samples were collected during the Joint Oceanographics Projects (JOPS II-Leg 5) by double oblique hauls with a baby bongo net 64 µm mesh size at depth between 14 and 150 m in inshore and offshore waters respectively, in seven transects, totaling 34 stations. The temperature and salinity characterised the tropical water masses. The dissolved oxygen was oversaturated in all stations. The nutrient-low concentrations showed an oligothrophic pattern in the whole area. 173 specific and infraspecific taxa were identified: Dinophyta (103 taxa), Bacillariophyta (61 taxa), Cyanobacteria (7 taxa), Chlorophyta and Chrysophyta (1 taxon). The family Ceratiaceae presented the highest species number (47 taxa). The cyanobacteria Trichodesmium erythraeum Ehrenberg, Oscillatoria spp. and the diatom Leptocylindrus danicus Cleve had higher frequence of occurrence and abundance. Species diversity varied from 0.71 to 3.46 bits.cell-1 and this low index was due to Trichodesmium erythraeum bloom and evenness from 0.14 to 0.65, showing an unstable pattern. The oceanic planktonic species were responsible for the higher richness with 78 taxa, corresponding to 58.39 percent of the total microphytoplankton. The species association presented two groups. The first one divided in two subgroups: one associated to the neritic/oceanic and oceanic planktonic species and the other to the oligotrophic indicator species. The second group was composed of some key species which were the most abundant and frequent in the area. The first three Principal Component Analyses (PCAs) explained 50.91 percent of the data variance showing that the area is structured by two groups: one offshore composed by oligotrophic indicators, and another nearshore influenced by continental ...
O presente trabalho foi desenvolvido com o objetivo de ampliar os conhecimentos sobre a diversidade, distribuição e ecologia da comunidade fitoplanctônica na Plataforma Continental de Pernambuco e área oceânica (lat. 7º 33' 00" S a 8º 41' 50" S e long. 34º 04' 47" O a 35º 01' 20" O). As coletas foram realizadas durante a prospecção Joint Oceanographics Project (JOPS II- Leg 5), através de arrastos oblíquos utilizando-se uma rede do tipo baby bongo com abertura de malha de 64 μm a profundidades entre 14 m para as estações neríticas e 150 m para as estações oceânicas, em sete perfis perpendiculares à costa, totalizando 34 estações. A temperatura e a salinidade apresentaram características de Água Tropical. O oxigênio dissolvido manteve-se elevado durante todo em todas as estações. As baixas concentrações de nutrientes apresentaram um padrão oligotrófico em toda a área. Foram identificados 173 táxons específicos e infraespecíficos: Dinophyta (103 táxons); Bacillariophyta (61 táxons); Cyanobactéria (7 táxons); Chlorophyta e Chrysophyta (1 táxon). A família Ceratiaceae apresentou maior riqueza, com 47 táxons. As cianobactérias Trichodesmium erythraeum Ehrenberg, Oscillatoria spp. e a diatomácea Leptocylindrus danicus Cleve caracterizaram a área em termos de frequência de ocorrência e dominância, respectivamente. A diversidade específica variou de 0,71 a 3,46 bits.cél-1, sendo estes baixos índices caracterizados pelo predomínio de Trichodesmiumerythraeum. A equitabilidade variou de 0,14 a 0,65. As espécies marinhas planctônicas oceânicas se destacaram com 78 dos táxons representando 58,39 por cento do microfitoplâncton total. A associação das espécies permitiu evidenciar dois grupos. O primeiro, subdivido em dois subgrupos: o primeiro associado às espécies planctônicas neríticas/oceânicas e oceânicas e o segundo, às espécies indicadoras de condições oligotróficas. O segundo grupo associou algumas espécies chave que caracterizaram a área ...