Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 955
Filtrar
1.
Cell ; 185(9): 1521-1538.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447071

RESUMO

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.


Assuntos
Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia , Apoptose , Neoplasias/patologia
2.
Immunity ; 55(2): 210-223, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139351

RESUMO

Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease.


Assuntos
Dietoterapia , Imunidade , Envelhecimento/imunologia , Restrição Calórica , Humanos , Inflamação , Corpos Cetônicos/biossíntese , Corpos Cetônicos/imunologia , Desnutrição/imunologia , Microbiota/imunologia , Fenômenos Fisiológicos da Nutrição/imunologia
3.
Mol Cell ; 81(9): 2041-2052.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823141

RESUMO

Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Senescência Celular , Hipóxia/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Fatores Etários , Animais , Antibióticos Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hidroxibenzoatos/farmacologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , Força Muscular , NF-kappa B/metabolismo , Comunicação Parácrina , Fenótipo , Transdução de Sinais
4.
Semin Immunol ; 65: 101699, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428172

RESUMO

Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.


Assuntos
Anti-Inflamatórios , Materiais Biomiméticos , Lipoxinas , Doenças Metabólicas , Humanos , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoxinas/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Fagocitose/fisiologia , Materiais Biomiméticos/uso terapêutico
5.
Mol Cell ; 70(3): 422-434.e6, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681499

RESUMO

PRC2 is a therapeutic target for several types of cancers currently undergoing clinical trials. Its activity is regulated by a positive feedback loop whereby its terminal enzymatic product, H3K27me3, is specifically recognized and bound by an aromatic cage present in its EED subunit. The ensuing allosteric activation of the complex stimulates H3K27me3 deposition on chromatin. Here we report a stepwise feedback mechanism entailing key residues within distinctive interfacing motifs of EZH2 or EED that are found to be mutated in cancers and/or Weaver syndrome. PRC2 harboring these EZH2 or EED mutants manifested little activity in vivo but, unexpectedly, exhibited similar chromatin association as wild-type PRC2, indicating an uncoupling of PRC2 activity and recruitment. With genetic and chemical tools, we demonstrated that targeting allosteric activation overrode the gain-of-function effect of EZH2Y646X oncogenic mutations. These results revealed critical implications for the regulation and biology of PRC2 and a vulnerability in tackling PRC2-addicted cancers.


Assuntos
Regulação Alostérica/fisiologia , Cromatina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Anormalidades Múltiplas/metabolismo , Linhagem Celular Tumoral , Hipotireoidismo Congênito/metabolismo , Anormalidades Craniofaciais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Deformidades Congênitas da Mão/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo
6.
J Proteome Res ; 23(2): 857-867, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232390

RESUMO

Membrane proteins, particularly those on the cell surface, play pivotal roles in diverse physiological processes, and their dysfunction is linked to a broad spectrum of diseases. Despite being crucial biomarkers and therapeutic drug targets, their low abundance and hydrophobic nature pose challenges in isolation and quantification, especially when extracted from tissues and organs. To overcome these hurdles, we developed the membrane-mimicking peptidisc, enabling the isolation of the membrane proteome in a water-soluble library conducive to swift identification through liquid chromatography with tandem mass spectrometry. This study applies the method across five mice organs, capturing between 200 and 450 plasma membrane proteins in each case. More than just membrane protein identification, the peptidisc is used to estimate the relative abundance across organs, linking cell-surface protein molecular functions to organ biological roles, thereby contributing to the ongoing discourse on organ specificity. This contribution holds substantial potential for unveiling new avenues in the exploration of biomarkers and downstream applications involving knowledge of the organ cell-surface proteome.


Assuntos
Proteoma , Proteômica , Camundongos , Animais , Proteoma/análise , Especificidade de Órgãos , Proteômica/métodos , Proteínas de Membrana/metabolismo , Membrana Celular/química , Biomarcadores/análise
7.
J Biol Chem ; 299(2): 102875, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621626

RESUMO

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Assuntos
Antineoplásicos , Apoptose , Aurora Quinases , Proteína bcl-X , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Aurora Quinases/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Células HCT116 , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
J Biomol NMR ; 78(1): 31-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072902

RESUMO

For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-ß-D-maltoside (DDM)/|||||cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/|||||CHS and LMNG/|||||CHS micelles, whereas the A2AAR conformational manifold in LMNG/|||||CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/|||||CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.


Assuntos
Detergentes , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Detergentes/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Receptores Purinérgicos P1 , Receptor A2A de Adenosina/química
9.
Small ; 20(3): e2305539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699754

RESUMO

Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.


Assuntos
Ânions , Polieletrólitos , Ânions/química , Polieletrólitos/química , Enzimas
10.
J Transl Med ; 22(1): 317, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549077

RESUMO

The anti-apoptotic BCL-2 protein family regulates cancer cell survival, thus it represents an important therapeutic target. Indeed, a drug class, called BH3-mimetics, have been developed to directly target BCL2 proteins and promote cancer cell death. Conventional wisdom suggests that the primary anti-cancer effect of BCL-2 inhibition is through induction of cancer cell death. However, a recent study by Zhao and colleagues describes that BCL-2 inhibition also enhances the function of classical dendritic cells, unleashing their role in immunosurveillance, promoting T cell immunity and tumour regression. Thus, inhibiting anti-apoptotic BCL-2 function may have a multi-pronged anti-tumour action.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/farmacologia , Proteínas Reguladoras de Apoptose/uso terapêutico , Linhagem Celular Tumoral
11.
Biochem Soc Trans ; 52(3): 1253-1263, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666604

RESUMO

Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.


Assuntos
Detergentes , Proteínas de Membrana , Proteômica , Detergentes/química , Proteômica/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Humanos , Proteoma , Animais , Membrana Celular/metabolismo , Membrana Celular/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-38960141

RESUMO

OBJECTIVES: To evaluate the efficacy and safety of intra-articular injections of a novel aggrecan mimetic, SB-061, in subjects with knee osteoarthritis (OA). METHODS: This was a randomized, placebo-controlled, double-blind phase II study comparing intra-articular injections of SB-061 with placebo (isotonic saline) for 52 weeks, administered at baseline, Wk 16, and Wk 32. Eligible subjects had a KL grade of 2 or 3 on X-ray of the target knee and a Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) pain score ≥20 out of 50 at screening and baseline visits. Subjects having any other knee condition were excluded. Use of analgesics was prohibited, except for rescue medication. The primary endpoint was change from baseline (CFB) in WOMAC pain at Week 8. Secondary endpoints were CFB in WOMAC function and total, ICOAP, Patient Global Assessment, and 20-meter walk test. Exploratory endpoints included structural CFB in magnetic resonance imaging entities. RESULTS: A total of 288 subjects were randomized to SB-061 (n = 145) or placebo (n = 143), and 252 (87.5%) completed injections. The groups were comparable at baseline. The primary endpoint was not met, as no significant difference in the CFB of the WOMAC pain score at Week 8 between groups was observed, nor at any other time point during the study. Similarly, neither of the secondary or exploratory endpoints indicated any significant difference between groups. The frequency and type of adverse events were similar between groups. SB-061 was well-tolerated. CONCLUSION: Intra-articular injections of SB-061 administered at baseline, Week 16, and Week 32, over one year in subjects with knee OA, were safe but did not show any statistically significant effect on knee pain nor on other symptomatic or structural entities compared to placebo. TRIAL REGISTRATION NUMBER EUDRACT NO: 2019-004515-31.

13.
Chemistry ; : e202401890, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753977

RESUMO

Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites. Here, we report an examination of protein backbone modification targeted specifically to hydrophobic core positions and its impacts on tertiary folded structure and fold stability. Different artificial monomer types are placed at core, core-flanking, or solvent-exposed positions in a compact three-helix protein. Effects on structure and folding energetics are assessed by NMR spectroscopy and biophysical methods. Results show that artificial residues can be well accommodated in the hydrophobic core of a defined tertiary fold, with effects on stability only modestly larger than identical changes at solvent-exposed sites. Collectively, these results provide new insights into folding behavior of protein-like artificial chains as well as strategies for the design of such molecules.

14.
FASEB J ; 37(3): e22823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809668

RESUMO

The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.


Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Fibronectinas/fisiologia , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Anticorpos Monoclonais , Adesão Celular/fisiologia , Neuritos
15.
Haemophilia ; 30 Suppl 3: 39-44, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481077

RESUMO

INTRODUCTION: Over the last decades progress in haemophilia treatment has been remarkable and prophylaxis with clotting factor concentrates in haemophilia A and B has been established as the standard of care in individuals with haemophilia and a severe bleeding phenotype. Besides clotting factor products with prolonged half-life non-factor therapies were developed which enable prophylaxis via subcutaneous administration. Factor VIIIa mimetics like emicizumab facilitate the coagulation pathway and are used in routine clinical practice for indivdiduals with haemophilia A. Rebalancing therapeutic agents like fitusiran, concizumab, marstacimab and serpin PC block the anticoagulant pathway and clinical trials using these products in individuals with haemophilia A and B are ongoing. AIM AND METHODS: A narrative review to asess the benefits and risks of non-factor therapies taking in to account re-defined haemophilia treatment goals. RESULTS: Prophylaxis for prevention of bleeds using non-factor products by subcutaneous administration is effective and results in reductions of bleeding episodes in individuals with haemophilia A or B with and without inhibitors. The treatment with emicizumab showed tolerable safety both in clinical trials and long-term real-world observations with few thrombotic events. In some clinical trials with rebalancing therapies (fitusiran and concizumab) thrombotic events occurred. Monitoring of the haemostatic function of novel therapies especially with concomitant haemostatic treatment is not yet established. CONCLUSION: With the advent of novel therapeutic agents including factor concentrates with ultra-long half-life and improved FVIIIa mimetics aimed at raising the bar of protection into the non-hemophilic range redefinition of haemophilia treatment goals is eagerly needed.


Assuntos
Anticorpos Biespecíficos , Hemofilia A , Hemostáticos , Humanos , Hemofilia A/terapia , Objetivos , Hemorragia/etiologia , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Fatores de Coagulação Sanguínea/uso terapêutico , Anticorpos Biespecíficos/uso terapêutico , Hemostáticos/uso terapêutico , Medição de Risco , Fator VIII/efeitos adversos , Fator VIII/genética
16.
J Pharmacol Sci ; 154(1): 30-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081681

RESUMO

Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Interleucina-6 , Linhagem Celular Tumoral , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia
17.
Mol Biol Rep ; 51(1): 694, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796662

RESUMO

BACKGROUND: Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS: The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION: Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.


Assuntos
Envelhecimento , Antioxidantes , Autofagia , Encéfalo , Curcumina , Estresse Oxidativo , Animais , Curcumina/farmacologia , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ratos , Envelhecimento/efeitos dos fármacos , Masculino , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Galactose/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética
18.
Biochem J ; 480(2): 161-176, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719792

RESUMO

Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
19.
Adv Exp Med Biol ; 1459: 341-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017851

RESUMO

Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myb , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
20.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717599

RESUMO

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Assuntos
Benzidinas , Colorimetria , Cobre , Fitosteróis , Colorimetria/métodos , Fitosteróis/análise , Fitosteróis/química , Cobre/química , Benzidinas/química , Estruturas Metalorgânicas/química , Limite de Detecção , Catálise , Nanocompostos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA