Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 22(4): 654-663, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30724435

RESUMO

We address two fundamental ecological questions: what are the limits to animal population density and what determines those limits? We develop simple alternative models to predict population limits in relation to body mass. A model assuming that within-species area use increases with the square of daily travel distance broadly predicts the scaling of empirical extremes of minimum density across birds and mammals. Consistent with model predictions, the estimated density range for a given mass, 'population scope', is greater for birds than for mammals. However, unlike mammals and carnivorous birds, expected broad relationships between body mass and density extremes are not supported by data on herbivorous and omnivorous birds. Our results suggest that simple constraints on mobility and energy use/supply are major determinants of the scaling of density limits, but further understanding of interactions between dietary constraints and density limits are needed to predict future wildlife population responses to anthropogenic threats.


Assuntos
Aves , Carnívoros , Mamíferos , Animais , Modelos Biológicos , Densidade Demográfica
2.
Proc Biol Sci ; 281(1794): 20141648, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25232135

RESUMO

The Devil's Hole pupfish Cyprinodon diabolis has iconic status among conservation biologists because it is one of the World's most vulnerable species. Furthermore, C. diabolis is the most widely cited example of a persistent, small, isolated vertebrate population; a chronic exception to the rule that small populations do not persist long in isolation. It is widely asserted that this species has persisted in small numbers (less than 400 adults) for 10 000-20 000 years, but this assertion has never been evaluated. Here, we analyse the time series of count data for this species, and we estimate time to coalescence from microsatellite data to evaluate this hypothesis. We conclude that mean time to extinction is approximately 360-2900 years (median 410-1800), with less than a 2.1% probability of persisting 10 000 years. Median times to coalescence varied from 217 to 2530 years, but all five approximations had wide credible intervals. Our analyses suggest that Devil's Hole pupfish colonized this pool well after the Pleistocene Lakes receded, probably within the last few hundred to few thousand years; this could have occurred through human intervention.


Assuntos
Espécies em Perigo de Extinção , Peixes Listrados/genética , Dinâmica Populacional , Animais , Repetições de Microssatélites/genética , Nevada
3.
Mol Ecol ; 23(4): 815-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24382213

RESUMO

Identification of populations and management units is an essential step in the study of natural systems. Still, there is limited consensus regarding how to define populations and management units, and whether genetic methods allow for inference at the relevant spatial and temporal scale. Here, we present a novel approach, integrating genetic, life history and demographic data to identify populations and management units in southern Scandinavian harbour seals. First, 15 microsatellite markers and model- and distance-based genetic clustering methods were used to determine the population genetic structure in harbour seals. Second, we used harbour seal demographic and life history data to conduct population viability analyses (PVAs) in the vortex simulation model in order to determine whether the inferred genetic units could be classified as management units according to Lowe and Allendorf's (Molecular Ecology, 19, 2010, 3038) 'population viability criterion' for demographic independence. The genetic analyses revealed fine-scale population structuring in southern Scandinavian harbour seals and pointed to the existence of several genetic units. The PVAs indicated that the census population size of each of these genetic units was sufficiently large for long-term population viability, and hence that the units could be classified as demographically independent management units. Our study suggests that population genetic inference can offer the same degree of temporal and spatial resolution as 'nongenetic' methods and that the combined use of genetic data and PVAs constitutes a promising approach for delineating populations and management units.


Assuntos
Conservação dos Recursos Naturais/métodos , Genética Populacional , Phoca/genética , Animais , Análise por Conglomerados , Variação Genética , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Países Escandinavos e Nórdicos
4.
Math Biosci Eng ; 20(1): 1148-1175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650806

RESUMO

In this paper, we propose a simplified bidimensional Wolbachia infestation model in a population of Aedes aegypti mosquitoes, preserving the main features associated with the biology of this species that can be found in higher-dimensional models. Namely, our model represents the maternal transmission of the Wolbachia symbiont, expresses the reproductive phenotype of cytoplasmic incompatibility, accounts for different fecundities and mortalities of infected and wild insects, and exhibits the bistable nature leading to the so-called principle of competitive exclusion. Using tools borrowed from monotone dynamical system theory, in the proposed model, we prove the existence of an invariant threshold manifold that allows us to provide practical recommendations for performing single and periodic releases of Wolbachia-carrying mosquitoes, seeking the eventual elimination of wild insects that are capable of transmitting infections to humans. We illustrate these findings with numerical simulations using parameter values corresponding to the wMelPop strain of Wolbachia that is considered the best virus blocker but induces fitness loss in its carriers. In these tests, we considered multiple scenarios contrasting a periodic release strategy against a strategy with a single inundative release, comparing their effectiveness. Our study is presented as an expository and mathematically accessible tool to study the use of Wolbachia-based biocontrol versus more complex models.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Reprodução , Fertilidade , Dinâmica Populacional
5.
Ecol Evol ; 7(24): 10987-11001, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299275

RESUMO

The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua, a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000-30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100-year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA