Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23318, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997545

RESUMO

Abdominal aortic aneurysm (AAA) is a prevalent condition characterized by the weakening and bulging of the abdominal aorta. This study aimed to investigate the impact of a stiff matrix on vascular smooth muscle cells (VSMCs) in AAA development. Bioinformatics analysis revealed that differentially expressed genes (DEGs) in VSMCs of an AAA mouse model were enriched in cellular senescence and related pathways. To simulate aging-related changes, VSMCs were cultured on stiff matrices, and compared to those on soft matrices, the VSMCs cultured on stiff matrices exhibited cellular senescence. Furthermore, the mutual distance between mitochondria and endoplasmic reticulum (ER) in VSMCs was increased, indicating altered mitochondria-endoplasmic reticulum contacts (MERCs). The observed upregulation of reactive oxygen species (ROS) levels, antioxidant gene expression, and decreased mitochondrial membrane potential suggested the presence of mitochondrial dysfunction in VSMCs cultured on a stiff matrix. Additionally, the induction of ER stress-related genes indicated ER dysfunction. These findings collectively indicated impaired functionality of both mitochondria and ER in VSMCs cultured on a stiff matrix. Moreover, our data revealed that high lipid levels exacerbated the effects of high matrix stiffness on VSMCs senescence, MERC sites, and mitochondria/ER dysfunction. Importantly, treatment with the antilipemic agent CI-981 effectively reversed these detrimental effects. These findings provide insights into the role of matrix stiffness, mitochondrial dysfunction, ER stress, and lipid metabolism in AAA development, suggesting potential therapeutic targets for intervention.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Mol Neurobiol ; 61(9): 6528-6538, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38321352

RESUMO

Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS) are dynamic structures whose physiological interaction is vital to direct life and death of the cell. A bevy of tethering proteins, mitofusin-1/2 (Mfn-1/2), glucose-regulated protein-75 (Grp-75), voltage-dependent anion channel-1 (VDAC1), and dynamic-related protein-1 (Drp1), plays an integral role in establishing and regulating this intricate intracellular communication. Dysregulation of this interplay leads to various neurodegenerative disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Although there is an absence of a well-defined molecular background that dictates the pathway of MERCS, adequate exploration has resulted in preliminary data that suggests its cardinal role in neuroregeneration. The juxtaposition of mitochondria and ER has a critical function in cell senescence, thus regulating regeneration. Axonal regeneration and brain tissue regeneration, using reactive astrocytes, are studied most extensively. Overexpression of Grp-75 promoted axonal regeneration post a nerve injury. Attempts have been made to exploit MERCS as potential therapeutic drug targets for enhancing neuroregeneration and impeding neurodegeneration. Novel strategies have been developed to aid the delivery of mitochondria into the neuronal cell body, which in turn establishes a network with the presiding ER resulting in contact site formation. The fascinating aspect of this mechanism is that despite the lack of inherent regenerative capacity in neurons, it can be induced by modifying MERCS.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Humanos , Animais , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Degeneração Neural/patologia , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Membranas Associadas à Mitocôndria
3.
Aging Cell ; : e14273, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001573

RESUMO

The kidney undergoes structural and physiological changes with age, predominantly studied in glomeruli and proximal tubules. However, limited knowledge is available about the impact of aging and anti-aging interventions on distal tubules. In this study, we investigated the effects of cytochrome b5 reductase 3 (CYB5R3) overexpression and/or dietary nicotinamide riboside (NR) supplementation on distal tubule mitochondria. Initially, transcriptomic data were analyzed to evaluate key genes related with distal tubules, CYB5R3, and NAD+ metabolism, showing significant differences between males and females in adult and old mice. Subsequently, our emphasis focused on assessing how these interventions, that have demonstrated the anti-aging potential, influenced structural parameters of distal tubule mitochondria, such as morphology and mass, as well as abundance, distance, and length of mitochondria-endoplasmic reticulum contact sites, employing an electron microscopy approach. Our findings indicate that both interventions have differential effects depending on the age and sex of the mice. Aging resulted in an increase in mitochondrial size and a decrease in mitochondrial abundance in males, while a reduction in abundance, size, and mitochondrial mass was observed in old females when compared with their adult counterparts. Combining both the interventions, CYB5R3 overexpression and dietary NR supplementation mitigated age-related changes; however, these effects were mainly accounted by NR in males and by transgenesis in females. In conclusion, the influence of CYB5R3 overexpression and dietary NR supplementation on distal tubule mitochondria depends on sex, genotype, and diet. This underscores the importance of incorporating these variables in subsequent studies to comprehensively address the multifaceted aspects of aging.

4.
Biomedicines ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831133

RESUMO

Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized by altered expression of some proteins involved in mitochondria function and mitochondria-ER contact sites (MERCS). Although further analyses remain necessary, this review may provide new hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations could be involved in the progression of NB.

5.
Front Cell Dev Biol ; 10: 848214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281107

RESUMO

Mitochondria are double membrane organelles within eukaryotic cells, which act as cellular power houses, depending on the continuous availability of oxygen. Nevertheless, under hypoxia, metabolic disorders disturb the steady-state of mitochondrial network, which leads to dysfunction of mitochondria, producing a large amount of reactive oxygen species that cause further damage to cells. Compelling evidence suggests that the dysfunction of mitochondria under hypoxia is linked to a wide spectrum of human diseases, including obstructive sleep apnea, diabetes, cancer and cardiovascular disorders. The functional dichotomy of mitochondria instructs the necessity of a quality-control mechanism to ensure a requisite number of functional mitochondria that are present to fit cell needs. Mitochondrial dynamics plays a central role in monitoring the condition of mitochondrial quality. The fission-fusion cycle is regulated to attain a dynamic equilibrium under normal conditions, however, it is disrupted under hypoxia, resulting in mitochondrial fission and selective removal of impaired mitochondria by mitophagy. Current researches suggest that the molecular machinery underlying these well-orchestrated processes are coordinated at mitochondria-endoplasmic reticulum contact sites. Here, we establish a holistic understanding of how mitochondrial dynamics and mitophagy are regulated at mitochondria-endoplasmic reticulum contact sites under hypoxia.

6.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139365

RESUMO

The very large G protein-coupled receptor (VLGR1, ADGRV1) is the largest member of the adhesion GPCR family. Mutations in VLGR1 have been associated with the human Usher syndrome (USH), the most common form of inherited deaf-blindness as well as childhood absence epilepsy. VLGR1 was previously found as membrane-membrane adhesion complexes and focal adhesions. Affinity proteomics revealed that in the interactome of VLGR1, molecules are enriched that are associated with both the ER and mitochondria, as well as mitochondria-associated ER membranes (MAMs), a compartment at the contact sites of both organelles. We confirmed the interaction of VLGR1 with key proteins of MAMs by pull-down assays in vitro complemented by in situ proximity ligation assays in cells. Immunocytochemistry by light and electron microscopy demonstrated the localization of VLGR1 in MAMs. The absence of VLGR1 in tissues and cells derived from VLGR1-deficient mouse models resulted in alterations in the MAM architecture and in the dysregulation of the Ca2+ transient from ER to mitochondria. Our data demonstrate the molecular and functional interaction of VLGR1 with components in MAMs and point to an essential role of VLGR1 in the regulation of Ca2+ homeostasis, one of the key functions of MAMs.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Animais , Criança , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
7.
Front Cell Dev Biol ; 10: 920228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092728

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid ß-peptide (Aß) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.

8.
Autoimmun Rev ; 20(8): 102867, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34118452

RESUMO

Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.


Assuntos
Síndrome de Sjogren , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Inflamação/metabolismo , Mitocôndrias
9.
Cells ; 9(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646031

RESUMO

Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria-ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Membranas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA