Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2219644120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155882

RESUMO

Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.


Assuntos
Pancreatite Crônica , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Canal de Ânion 1 Dependente de Voltagem/metabolismo
2.
EMBO Rep ; 23(12): e54978, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36321428

RESUMO

Mitochondrial Ca2+ ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca2+ content and cytosolic Ca2+ homeostasis strictly depend on Ca2+ transporters. In recent decades, the major players responsible for mitochondrial Ca2+ uptake and release have been identified, except the mitochondrial Ca2+ /H+ exchanger (CHE). Originally identified as the mitochondrial K+ /H+ exchanger, LETM1 was also considered as a candidate for the mitochondrial CHE. Defining the mitochondrial interactome of LETM1, we identify TMBIM5/MICS1, the only mitochondrial member of the TMBIM family, and validate the physical interaction of TMBIM5 and LETM1. Cell-based and cell-free biochemical assays demonstrate the absence or greatly reduced Na+ -independent mitochondrial Ca2+ release in TMBIM5 knockout or pH-sensing site mutants, respectively, and pH-dependent Ca2+ transport by recombinant TMBIM5. Taken together, we demonstrate that TMBIM5, but not LETM1, is the long-sought mitochondrial CHE, involved in setting and regulating the mitochondrial proton gradient. This finding provides the final piece of the puzzle of mitochondrial Ca2+ transporters and opens the door to exploring its importance in health and disease, and to developing drugs modulating Ca2+ exchange.


Assuntos
Antiporters , Prótons , Antiporters/genética
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791513

RESUMO

Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Mitocôndrias , Neuroblastoma , Receptor trkA , Humanos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Receptor trkA/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Dobramento de Proteína , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
4.
IUBMB Life ; 75(8): 673-687, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37002613

RESUMO

Severe hypoxia triggers apoptosis leads to myofibers loss and is attributable to impaired intracellular calcium (iCa2+ ) homeostasis, resulting in reduced muscle activity. Hypoxia increases intracellular Ca2+ by activating the release of Ca2+ from iCa2+ stores, however, the effect of increased [iCa2+ ] on the mitochondria of muscle cells at high-altitude hypoxia is largely unexplored. This study examined mitochondrial Ca2+ overload due to altered expression of mitochondrial calcium uptake 1 (MICU1), that is, a gatekeeper of the mitochondrial Ca2+ uniporter, impaired mitochondrial membrane potential (ΔΨm). p53 stabilization and its translocation to the mitochondria were observed following disrupted mitochondrial membrane integrity in myoblasts under hypoxia. Furthermore, the downstream effects of p53 led to the upregulation of proapoptotic proteins (Bax, Caspase-3, and cytochrome C) in myoblasts under hypoxia. Nanocurcumin-pyrroloquinoline quinone formulation (NCF; Indian patent no. 302877), developed to address hypoxia-induced consequences, was found to be beneficial in maintaining mitochondrial Ca2+ homeostasis and limiting p53 translocation into mitochondria under hypoxia in muscle myoblasts. NCF treatment also modulates heat shock proteins and apoptosis-regulating protein expression in myoblasts. Conclusively, we proposed that mitochondrial Ca2+ overload due to altered MICU1 expression intensifies apoptosis and mitochondrial dysfunctionality. The study also reported that NCF could improve mitochondrial [Ca2+ ] homeostasis and antiapoptotic ability in C2C12 myoblasts under hypoxia.


Assuntos
Cálcio , Proteína Supressora de Tumor p53 , Humanos , Cálcio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteostase , Mitocôndrias/metabolismo , Mioblastos , Apoptose , Hipóxia/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Potencial da Membrana Mitocondrial
5.
Fish Shellfish Immunol ; 141: 109053, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661036

RESUMO

Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.

6.
Fish Shellfish Immunol ; 143: 109205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918582

RESUMO

Polystyrene microplastics (PM) is a pressing global environmental concern, posing substantial risks to aquatic ecosystems. Microalgal astaxanthin (MA), a heme pigment, safeguards cells against oxidative damage induced by free radicals, which contributes to various health conditions, including aging, inflammation and chronic diseases. Herein, we investigated the potential of MA in ameliorating the immunotoxicity of PM on carp (Cyprinus carpio L.) based on head kidney lymphocytes treated with PM (250 µM) and/or MA (100 µM). Firstly, CCK8 results showed that PM resulted in excessive death of head kidney lymphocytes. Secondly, head kidney lymphocytes treated with PM had a higher proportion of necroptosis, and the levels of necroptosis-related genes in head kidney lymphocytes were increased. Thirdly, the relative red fluorescence intensity of JC-1 and MitoSox showed decreased mitochondrial membrane potential and increased mtROS in head kidney lymphocytes treated with PM. MitoTracker® Green FM fluorescence analysis revealed enhanced mitochondrial Ca2+ levels in PM-treated lymphocytes, corroborating the association between PM exposure and elevated intracellular Ca2+ dynamics. PM exposure resulted in upregulation of calcium homeostasis-related gene (Orail, CAMKIIδ and SLC8A1) in lymphocytes. Subsequent investigations revealed that PM exposure reduced miR-25-5p expression while increasing levels of MCU, MICU1, and MCUR1. Notably, these effects were counteracted by treatment with MA. Furthermore, PM led to the elevated secretion of inflammatory factors (IFN-γ, IL-1ß, IL-2 and TNF-α), thereby inducing immune dysfunction in head kidney lymphocytes. Encouragingly, MA treatment effectively mitigated the immunotoxic effects induced by PM, demonstrating its potential in ameliorating necroptosis, mitochondrial dysfunction and immune impairment via regulating the miR-25-5p/MCU axis in lymphocytes. This study sheds light on safeguarding farmed fish against agrobiological threats posed by PM, highlighting the valuable applications of MA in aquaculture.


Assuntos
Carpas , MicroRNAs , Animais , Microplásticos/efeitos adversos , Poliestirenos/toxicidade , Plásticos/efeitos adversos , Carpas/metabolismo , Necroptose , Ecossistema , Rim Cefálico/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Linfócitos/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Homeostase
7.
J Nanobiotechnology ; 21(1): 465, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049882

RESUMO

Breast cancer treatment has been a global puzzle, and apoptosis strategies based on mitochondrial Ca2+ overload have attracted extensive attention. However, various limitations of current Ca2+ nanogenerators make it difficult to maintain effective Ca2+ overload concentrations. Here, we constructed a multimodal Ca2+ nano-modulator that, for the first time, combined photothermal therapy (PTT) and mitochondrial Ca2+ overload strategies to inhibit tumor development. By crosslinking sodium alginate (SA) on the surface of calcium carbonate (CaCO3) nanoparticles encapsulating with Cur and ICG, we prepared a synergistic Ca2+ nano-regulator SA/Cur@CaCO3-ICG (SCCI). In vitro studies have shown that SCCI further enhanced photostability while preserving the optical properties of ICG. After uptake by tumor cells, SCCI can reduce mitochondrial membrane potential and down-regulate ATP production by producing large amounts of Ca2+ at low pH. Near-infrared light radiation (NIR) laser irradiation made the tumor cells heat up sharply, which not only accelerated the decomposition of CaCO3, but also produced large amounts of reactive oxygen species (ROS) followed by cell apoptosis. In vivo studies have revealed that the Ca2+ nano-regulators had excellent targeting, biocompatibility, and anti-tumor effects, which can significantly inhibit the proliferation of tumor cells and play a direct killing effect. These findings indicated that therapeutic strategies based on ionic interference and PTT had great therapeutic potential, providing new insights into antitumor therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/terapia , Verde de Indocianina/química , Fototerapia , Nanopartículas/química , Homeostase , Linhagem Celular Tumoral
8.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069047

RESUMO

Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.


Assuntos
Imunidade Inata , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais , Inflamação/metabolismo
9.
Semin Cancer Biol ; 76: 132-138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34089843

RESUMO

Arsenite is an important carcinogen and toxic compound, causing various deleterious effects through multiple mechanisms. In this review, we focused on mitochondrial ROS (mitoROS) and discussed on the mechanisms mediating their formation. The metalloid promotes direct effects in mitochondria, resulting in superoxide formation only under conditions of increased mitochondrial Ca2+ concentration ([Ca2+]m). In this perspective, the time of exposure and concentration requirements for arsenite were largely conditioned by other effects of the metalloid in specific sites of the endoplasmic reticulum (ER). Arsenite induced a slow and limited mobilization of Ca2+ from IP3R via a saturable mechanism, failing to increase the [Ca2+]m. This effect was however associated with the triggering of an intraluminal crosstalk between the IP3R and the ryanodine receptor (RyR), causing a large and concentration dependent release of Ca2+ from RyR and a parallel increase in [Ca2+]m. Thus, the Ca2+-dependent mitoO2-. formation appears to be conditioned by the spatial/functional organization of the ER/mitochondria network and RyR expression. We also speculate on the possibility that the ER stress response might regulate the above effects on the intraluminal crosstalk between the IP3R and the RyR via oxidation of critical thiols mediated by the H2O2 locally released by oxidoreductin 1α.


Assuntos
Arsenitos/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
J Nanobiotechnology ; 20(1): 225, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551609

RESUMO

BACKGROUND: By hindering energy supply pathway for cancer cells, an alternative therapeutic strategy modality is put forward: tumor starvation therapy. And yet only in this blockade of glucose supply which is far from enough to result in sheer apoptosis of cancer cells. RESULTS: In an effort to boost nutrient starvation-dominated cancer therapy, here a novel mitochondrial Ca2+ modulator Alg@CaP were tailor-made for the immobilization of Glucose oxidase for depriving the intra-tumoral glucose, followed by the loading of Curcumin to augment mitochondrial Ca2+ overload to maximize the therapeutic efficiency of cancer starvation therapy via mitochondrial dysfunctions. Also, autophagy inhibitors Obatoclax were synchronously incorporated in this nano-modulator to highlight autophagy inhibition. CONCLUSION: Here, a promising complementary modality for the trebling additive efficacy of starvation therapy was described for cutting off the existing energy sources in starvation therapy through Curcumin-augmented mitochondrial Ca2+ overload and Obatoclax-mediated autophagy inhibition.


Assuntos
Curcumina , Neoplasias , Inanição , Apoptose , Autofagia , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Glucose , Humanos , Indóis , Neoplasias/terapia , Nutrientes , Pirróis
11.
Curr Top Membr ; 90: 13-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36368872

RESUMO

Mitochondria actively contribute to cellular Ca2+ homeostasis. The molecular mechanisms of mitochondrial Ca2+ uptake and release are well characterized and are attributed to the multi-protein assembly of the mitochondrial Ca2+ uniporter complex (MCUC) and the mitochondrial sodium-calcium exchanger (NCLX), respectively. Hence, Ca2+ transfer from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) into the mitochondrial matrix has been quantitatively visualized on the subcellular level using targeted fluorescent biosensors. However, a correlation between the amplitude of cytosolic Ca2+ elevation with that in the mitochondrial matrix has not been investigated in detail so far. In the present study, we combined the Ca2+-mobilizing agonist histamine with the H1-receptor antagonist risperidone to establish a well-tunable experimental approach allowing the correlation between low, slow, high, and fast cytosolic and mitochondrial Ca2+ signals in response to inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release. Our present data confirm a defined threshold in cytosolic Ca2+, which is necessary for the activation of mitochondrial Ca2+ uptake. Moreover, our data support the hypothesis of different modes of mitochondrial Ca2+ uptake depending on the source of the ion (i.e., ER vs SOCE).


Assuntos
Sinalização do Cálcio , Risperidona , Risperidona/farmacologia , Risperidona/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo
12.
Ecotoxicol Environ Saf ; 237: 113535, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461028

RESUMO

Foodborne mycotoxins are toxic metabolites that are produced by fungi. The widespread contamination of food and its by-products by mycotoxins is a global food safety problem that potentially threatens public health and other exposed animals. Most foodborne mycotoxins induce hepatotoxicity. However, only few studies have investigated the regulatory mechanisms of mitochondrial calcium transport monomers in mycotoxin-induced hepatotoxicity. Therefore, according to relevant studies and reports, this review suggests that intracellular Ca(2 +) homeostasis and mitochondrial Ca(2 +) uniporter are involved in the regulation of mycotoxin-induced hepatotoxicity. This review provides some ideas for future research involving mitochondrial Ca(2 +) uniporter in the molecular targets of mycotoxin-induced hepatotoxicity, as well as a reference for the research and development of related drugs and the treatment of related diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Micotoxinas , Animais , Cálcio , Canais de Cálcio , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Contaminação de Alimentos/análise , Micotoxinas/toxicidade
13.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328444

RESUMO

Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.


Assuntos
Sinalização do Cálcio , Remodelação Ventricular , Cálcio/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo
14.
Angew Chem Int Ed Engl ; 61(36): e202204904, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35687022

RESUMO

Pyroptosis provides a new direction and broad prospects for cancer immunotherapy. However, the development of a nanoplatform as a pyroptosis inducer is limited, and the discovery of a new type of nano-pyroptosis inducer for cancer immunotherapy is still imminent. Herein, biodegradable Ca2+ nanomodulators (CaNMs) are prepared as pyroptosis inducers for cancer immunotherapy via mitochondrial Ca2+ overload. The obtained CaNMs can decompose under low pH to release Ca2+ and curcumin, leading to a sudden surge in mitochondrial Ca2+ ions, eventually resulting in pyroptosis. We not only confirm the occurrence of mitochondrial Ca2+ overload-triggered pyroptosis for the first time but also reveal the robust immune responses via CaNMs, along with remarkably suppressing tumor proliferation and lung metastasis. This work will provide new strategies and inspiration for pyroptosis-mediated cancer treatments, greatly contributing to the further development of Ca2+ nanomodulators.


Assuntos
Curcumina , Neoplasias , Imunoterapia , Mitocôndrias , Neoplasias/terapia , Piroptose
15.
J Mol Cell Cardiol ; 151: 145-154, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147447

RESUMO

Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Animais , Transporte Biológico , Fenômenos Biofísicos , Humanos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
16.
Semin Cell Dev Biol ; 94: 59-65, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30658153

RESUMO

Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sinalização do Cálcio , Humanos
17.
Small ; 17(18): e2007672, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759364

RESUMO

Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.


Assuntos
Neoplasias da Mama , Nanopartículas , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Durapatita , Feminino , Humanos , Células MCF-7
18.
Cell Commun Signal ; 19(1): 99, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579758

RESUMO

Multiple myeloma (MM) is a common malignant tumor of plasma cells. Despite several treatment approaches in the past two decades, MM remains an aggressive and incurable disease in dire need of new treatment strategies. Approximately 70-80% of patients with MM have myeloma bone disease (MBD), often accompanied by pathological fractures and hypercalcemia, which seriously affect the prognosis of the patients. Calcium channels and transporters can mediate Ca2+ balance inside and outside of the membrane, indicating that they may be closely related to the prognosis of MM. Therefore, this review focuses on the roles of some critical calcium channels and transporters in MM prognosis, which located in the plasma membrane, endoplasmic reticulum and mitochondria. The goal of this review is to facilitate the identification of new targets for the treatment and prognosis of MM. Video Abstract.


Assuntos
Canais de Cálcio/genética , Sinalização do Cálcio/genética , Terapia de Alvo Molecular , Mieloma Múltiplo/genética , Cálcio/metabolismo , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/genética , Mieloma Múltiplo/patologia , RNA Interferente Pequeno/uso terapêutico
19.
Cell Biochem Funct ; 39(2): 248-257, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32643225

RESUMO

Oocyte activation deficiency leads to female infertility. [Ca2+ ]i oscillations are required for mitochondrial energy supplement transition from the resting to the excited state, but the underlying mechanisms are still very little known. Three mitochondrial Ca2+ channels, Mitochondria Calcium Uniporter (MCU), Na+ /Ca2+ Exchanger (NCLX) and Voltage-dependent Ca2+ Channel (VDAC), were deactivated by inhibitors RU360, CGP37157 and Erastin, respectively. Both Erastin and CGP37157 inhibited mitochondrial activity significantly while attenuating [Ca2+ ]i and [Ca2+ ]m oscillations, which caused developmental block of pronuclear formation. Thus, NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation, which may be used as potential targets to treat female infertility. SIGNIFICANCE OF THE STUDY: NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Oócitos/metabolismo , Animais , Canais de Cálcio/química , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Rutênio Vermelho/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Tiazepinas/farmacologia , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores , Canais de Ânion Dependentes de Voltagem/metabolismo
20.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946271

RESUMO

Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA