RESUMO
Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability.
Assuntos
Bass/genética , Proteínas de Peixes/genética , Iridovirus/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Bass/metabolismo , Bass/virologia , Linhagem Celular , Proteínas de Peixes/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway.
Assuntos
Apoptose/fisiologia , Iridovirus/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína X Associada a bcl-2/biossíntese , Animais , Apoptose/genética , Bass , Benzotiazóis/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Ativação Enzimática , Marcação In Situ das Extremidades Cortadas , Iridovirus/enzimologia , Iridovirus/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Tolueno/análogos & derivados , Tolueno/farmacologiaRESUMO
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is â¼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 µM, which was 18.5-fold better than DHA with an IC50 of 39.96 µM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.
RESUMO
BACKGROUND: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. OBJECTIVE: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. METHOD: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). RESULTS: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8µM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. CONCLUSION: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Cumarínicos/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
Giant seaperch iridovirus (GSIV) induces cell death by an unknown mechanism. We postulated that this mechanism involves mitochondria-mediated cell death. Cell viability assays revealed a steady increase in dead grouper fin cells (GF-1) after GSIV infection, from 11% at 2 days post-infection (dpi) to 67% at 5 dpi. Annexin V/PI staining revealed GSIV infection induced apoptosis in a steadily increasing fraction of cells, from 4% at 1 dpi to 29% at 5 dpi. Furthermore, post-apoptotic necrosis was apparent at 4 and 5 dpi in the late replication stage. In the early replication stage, JC-1 dye revealed mitochondrial membrane potential (ΔΨm) loss in 42% of infected cells at 1 dpi, increasing to 98% at 3 dpi. Phosphatidylserine (PS) exposure and loss of ΔΨm from apoptosis/necrosis was attenuated by treatment with the adenine nucleotide translocase inhibitor bongkrekic acid (BKA) and the protein synthesis inhibitor cyclohexamide (CHX). These data suggest GSIV induces GF-1 apoptotic/necrotic cell death through pathways that require newly synthesized protein and involve the mitochondrial function.
Assuntos
Antivirais/farmacologia , Ácido Bongcréquico/farmacologia , Morte Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Iridovirus/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Linhagem Celular , PeixesRESUMO
A new series of diverse triazoles linked through the hydroxyl group of lactone ring opened osthol (1) were synthesized using click chemistry approach. All the derivatives were subjected to 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) cytotoxicity screening against a panel of seven different human cancer cell lines viz. colon (colo-205), colon (HCT-116), breast (T47D), lung (NCI-H322), lung (A549), prostate (PC-3) and Skin (A-431) to check their cytotoxic potential. Interestingly, among the tested molecules, most of the analogs displayed better cytotoxic activity than the parent osthol (1). Of the synthesized triazoles, compounds 8 showed the best activity with IC50 of 1.3, 4.9, 3.6, 41.0, 35.2, 26.4 and 7.2 µM against colon (Colo-205 and HCT-116), breast (T47D), lung (NCI-H322 and A549), prostate (PC-3) and Skin (A-431) cancer lines respectively. Compound 8 induced potent apoptotic effects in Colo-205 cells. The population of apoptotic cells increased from 11.4% in case of negative control to 24.1% at 25 µM of 8. Compound 8 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of cancer cells used. The present study resulted in identification of broad spectrum cytotoxic activity of analogs bearing electron withdrawing substituents, besides the enhanced selective activity of analogs with electron donating moieties.
Assuntos
Química Click , Cumarínicos/química , Cumarínicos/farmacologia , Citotoxinas/síntese química , Citotoxinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Titanium dioxide (TiO(2)) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO(2) particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO(2) has yet to be defined. METHODS AND RESULTS: In this study, we demonstrated that combined treatment with TiO(2) nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO(2) nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO(2) (P25-70)) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO(2)-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO(2) (P25-70) and ultraviolet A irradiation. CONCLUSION: These results indicate that sub-100 nm sized TiO(2) treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.