Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Infect Immun ; 92(3): e0049423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294242

RESUMO

Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácidos Cafeicos , Animais , Humanos , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mitocôndrias/metabolismo
2.
Apoptosis ; 29(5-6): 768-784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493408

RESUMO

Hepatocellular carcinoma (HCC) is a common cause of cancer-associated death worldwide. The mitochondrial unfolded protein response (UPRmt) not only maintains mitochondrial integrity but also regulates cancer progression and drug resistance. However, no study has used the UPRmt to construct a prognostic signature for HCC. This work aimed to establish a novel signature for predicting patient prognosis, immune cell infiltration, immunotherapy, and chemotherapy response based on UPRmt-related genes (MRGs). Transcriptional profiles and clinical information were obtained from the TCGA and ICGC databases. Cox regression and LASSO regression analyses were applied to select prognostic genes and develop a risk model. The TIMER algorithm was used to investigate immunocytic infiltration in the high- and low-risk subgroups. Here, two distinct clusters were identified with different prognoses, immune cell infiltration statuses, drug sensitivities, and response to immunotherapy. A risk score consisting of seven MRGs (HSPD1, LONP1, SSBP1, MRPS5, YME1L1, HDAC1 and HDAC2) was developed to accurately and independently predict the prognosis of HCC patients. Additionally, the expression of core MRGs was confirmed by immunohistochemistry (IHC) staining, single-cell RNA sequencing, and spatial transcriptome analyses. Notably, the expression of prognostic MRGs was significantly correlated with sorafenib sensitivity in HCC and markedly downregulated in sorafenib-treated HepG2 and Huh7 cells. Furthermore, the knockdown of LONP1 decreased the proliferation, invasion, and migration of HepG2 cells, suggesting that upregulated LONP1 expression contributed to the malignant behaviors of HCC cells. To our knowledge, this is the first study to investigate the consensus clustering algorithm, prognostic potential, immune microenvironment infiltration and drug sensitivity based on the expression of MRGs in HCC. In summary, the UPRmt-related classification and prognostic signature could assist in determining the prognosis and personalized therapy of HCC patients from the perspectives of predictive, preventative and personalized medicine.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Mitocôndrias , Sorafenibe , Resposta a Proteínas não Dobradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/diagnóstico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Prognóstico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Feminino , Linhagem Celular Tumoral
3.
Cell Mol Life Sci ; 78(16): 5925-5951, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34228161

RESUMO

Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.


Assuntos
Mitocôndrias/fisiologia , Transdução de Sinais/fisiologia , Animais , Homeostase/fisiologia , Humanos , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteoma/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
4.
Ecotoxicol Environ Saf ; 245: 114087, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122457

RESUMO

Automobile exhaust-derived particulate matter 2.5 (PM2.5) can cause spermatogenic cell damage, potentially resulting in male infertility. This study uses male prepubertal Sprague Dawley (SD) rats to explore the molecular mechanisms by which automobile exhaust-derived PM2.5 causes spermatogenic cell damage and induces spermatogenesis dysfunction during sexual maturity by disrupting the mitochondrial unfolded protein response (UPRmt) in spermatogenic cells. Male prepubertal SD rats were randomly divided into four groups: control (intratracheal instillation of normal saline), low-dose PM2.5 (5 mg/kg), high-dose PM2.5 (10 mg/kg), and PM2.5 10 mg/kg +Vit (100 mg/kg of vitamin C and 50 mg/kg of vitamin E). The rats were treated for four weeks, with five consecutive treatment days and two non-treatment days, followed by cohabitation. Testicular and epididymal tissues were harvested for analysis. The mitochondria in spermatogenic cells were observed under an electron microscope. UPRmt-, oxidative stress-, and apoptosis-related markers in spermatogenic cells were examined. Spermatogenic cell numbers and conception rate declined significantly with increasing PM2.5 dose, with their mitochondria becoming vacuolated, swollen, and degenerated to varying degrees. The apoptosis of spermatogenic cells was abnormally enhanced in PM2.5 exposed groups compared to the control group. Spermatogenic cell numbers of conception rate gradually recovered, mitochondrial damage in spermatogenic cells was alleviated, and spermatogenic cell apoptosis was significantly reduced after vitamin intervention. In addition, protein levels of superoxide dismutase 1 (Sod1), nuclear factor erythroid 2-related factor 2 (Nrf2), and B-cell lymphoma 2 (Bcl-2) were significantly lower, while those of Bcl2-associated X apoptosis regulator (Bax), cleaved caspase 3 (Casp3), and cytochrome c (Cyt-c) and malondialdehyde (MDA) levels were significantly higher in the high-dose PM2.5 group than in the control group. The levels of UPRmt-related proteins C/EBP homologous protein (Chop), heat shock protein 60 (Hsp60), and activating transcription factors 4 (Atf4) and 5 (Atf5) were higher in the low-dose PM2.5 group, lower in the high-dose PM2.5 group, and gradually recovered in PM2.5 10 mg/kg +Vit group. Our results show that exposure to automobile exhaust-derived PM2.5 induces oxidative stress responses, leads to post-sexual maturation UPRmt dysfunction and mitochondrial impairment, and abnormally enhances spermatogenic cell apoptosis in prepubertal rats, resulting in male infertility.


Assuntos
Infertilidade Masculina , Emissões de Veículos , Fatores Ativadores da Transcrição , Animais , Apoptose , Ácido Ascórbico , Caspase 3/metabolismo , Chaperonina 60 , Citocromos c , Humanos , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Ratos , Ratos Sprague-Dawley , Solução Salina , Espermatogênese , Superóxido Dismutase-1 , Emissões de Veículos/toxicidade , Vitamina E/farmacologia , Vitaminas , Proteína X Associada a bcl-2/metabolismo
5.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799894

RESUMO

The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.


Assuntos
Tecido Adiposo Branco/metabolismo , Lipodistrofia/metabolismo , Longevidade , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Proteostase
6.
Pharmacol Res ; 159: 104948, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450345

RESUMO

Impaired neuronal proteostasis is a salient feature of both aging and protein misfolding disorders. Amyloidosis, a consequence of this phenomena is observed in the brains of diabetic patients over the chronic time period. These toxic aggregates not only cause age-related decline in proteostasis, but also dwindle its ability to increase or restore the chaperones in response to any stressful condition. Mitochondria acts as the main source of energy regulation and many metabolic disorders such as diabetes have been associated with altered oxidative phosphorylation (OxPhos) and redox imbalance in the mitochondria. The mitochondrial unfolded protein response (UPRmt) acts as a mediator for maintaining the mitochondrial protein homeostasis and quality control during such conditions. Over a long time period, these responses start shutting off leading to proteotoxic stress in the neurons. This reduces the buffering capacity of protein network signalling during aging, thereby increasing the risk of neurodegeneration in the brain. In this review, we focus on the proteotoxic stress that occurs as an amalgamation of diabetes and aging, as well as the impact of mitochondrial dysfunction on the neuronal survival affecting the diabetic brain and its long term consequences on the memory changes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Complicações do Diabetes/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteostase , Fatores Etários , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Glicemia/metabolismo , Encéfalo/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Complicações do Diabetes/psicologia , Metabolismo Energético , Humanos , Memória , Mitocôndrias/genética , Mitocôndrias/patologia , Degeneração Neural , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Neurônios/patologia , Desdobramento de Proteína , Transdução de Sinais
7.
Biology (Basel) ; 13(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392333

RESUMO

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

8.
Ann Transl Med ; 11(2): 64, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819568

RESUMO

Background: The mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which exerts a crucial role in maintaining mitochondrial proteostasis during stress. However, there is no bibliometric analyses systematically studied this field which could comprehensively review research trends, evaluate publication performances and provide future perspectives. Methods: Articles investigating UPRmt published between 1994 and 2021 were downloaded from the Core Collection of the Web of Science (WOS). CiteSpace and VOSviewer bibliometric software were applied for bibliometric and visual analyses. Results: A total of 2,073 papers researching UPRmt were retrieved. According to the published number of papers, the field of UPRmt research has gone through its infancy (after 2000) and rapid growth (after 2021) phases. The United States and China contributed the most to UPRmt research. Regarding the distribution of institutions, Harvard University was the most influential institution. The most prolific authors are Johan Auwerx and CM Haynes. PLoS One is the most extensive journal in the field of UPRmt research, while the Cell Death and Differentiation journal had the greatest impact among the most-authored journals. Moreover, biochemistry/molecular biology, and cell biology are the largest subject areas. UPRmt research is mainly categorized as UPRmt, transcription, endoplasmic reticulum (ER) stress, lipotoxicity, mitophagy, inflammation, skeletal muscle, hypoxia, apoptosis, mitochondrial dysfunction, neurodegeneration, mitochondrial permeability transition, and integrated stress response. Conclusions: At present, research on UPRmt is booming. Further strengthening the cooperation and exchanges between countries, institutions, and authors in the future will surely promote the development of this field.

9.
J Mol Neurosci ; 72(12): 2464-2472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36508141

RESUMO

This study was designed to determine the effects and underlying mechanism of honokiol (HNK) on traumatic brain injury (TBI). A rat TBI model was constructed using the modified Feeney free-fall percussion method and treatment with HNK via intraperitoneal injection. The brain tissues of the rats in each group were assessed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay to detect the level of neuronal apoptosis. Western blots were used to detect the expression levels of apoptosis-related proteins (Bcl-2 and Bax), and ELISAs were used to measure the levels of pro-inflammatory cytokines (IL-18 and IL-1ß) and the activity of caspase-1. In addition, the mitochondrial membrane potential, reactive oxygen species (ROS), and adenosine 5'-triphosphate (ATP) were also measured. Western blots and qRT-PCRs were used to determine the relative expression levels of the mitochondrial unfolded protein response (UPRmt)-related proteins and mRNAs. Based on the experimental results, treatment with HNK was associated with a decrease in the number of TUNEL-positive cells, downregulated Bax expression levels, elevated Bcl-2 expression levels, and inhibition of neuronal apoptosis in the brain tissue of TBI rats. HNK also suppressed neuroinflammation by decreasing IL-1ß and IL-18 levels and caspase-1 activity. Additionally, HNK lowered the mitochondrial membrane potential and ROS levels, increased ATP levels, and improved mitochondrial dysfunction in neural cells. Furthermore, in the investigation of the mechanism of HNK on TBI, we observed that HNK could activate UPRmt by upregulating the mRNA and protein expression levels of HSPA9, CLPP, and HSP60 in the brain tissues of TBI rats. Collectively, HNK reduced mitochondrial dysfunction, inhibited the apoptosis of nerve cells, and attenuated inflammation in the brains of TBI rats. The protective effect of HNK may be achieved through the activation of UPRmt.


Assuntos
Lesões Encefálicas Traumáticas , Interleucina-18 , Ratos , Animais , Interleucina-18/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neurônios/metabolismo , Resposta a Proteínas não Dobradas , Mitocôndrias/metabolismo , Caspases/metabolismo , Caspases/farmacologia
10.
Front Mol Neurosci ; 15: 831116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283733

RESUMO

Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.

11.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36378567

RESUMO

Ovarian cells, including oocytes, granulosa/cumulus cells, theca cells, and stromal cells, contain abundant mitochondria, which play indispensable roles in the processes of ovarian follicle development. Ovarian function is closely controlled by mitochondrial proteostasis and mitostasis. While mitochondrial proteostasis and mitostasis are disturbed by several factors, leading to dysfunction of ovarian function and initiating the mitochondrial unfolded protein response (UPRmt) and mitophagy to maintain or recover ovarian function and mitochondrial function, clear interactions between the 2 pathways in the ovary have not been fully elucidated. Here, we comprehensively summarize the molecular networks or regulatory mechanisms behind further mitochondrial research in the ovary. This review provides novel insights into the interactions between the UPRmt and mitophagy in ovarian functions.


Assuntos
Mitocôndrias , Mitofagia , Feminino , Animais , Mitocôndrias/metabolismo , Oócitos/metabolismo , Células da Granulosa/metabolismo , Homeostase
12.
Mol Metab ; 66: 101623, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332794

RESUMO

OBJECTIVES: The Mitochondrial Unfolded Protein Response (UPRmt) is a compartment-specific mitochondrial quality control (MQC) mechanism that uses the transcription factor ATF5 to induce the expression of protective enzymes to restore mitochondrial function. Acute exercise is a stressor that has the potential to temporarily disrupt organellar protein homeostasis, however, the roles of ATF5 and the UPRmt in maintaining basal mitochondrial content, function and exercise-induced MQC mechanisms in skeletal muscle are not known. METHODS: ATF5 KO and WT mice were examined at rest or after a bout of acute endurance exercise. We measured protein content in whole muscle, nuclear, cytosolic and mitochondrial fractions, in addition to mRNA transcript levels in whole muscle. Using isolated mitochondria, we quantified rates of oxygen consumption and ROS emission to observe the effects of the absence of ATF5 on organelle function. RESULTS: ATF5 KO mice exhibited a larger and less functional muscle mitochondrial pool, most likely a culmination of enhanced biogenesis via increased PGC-1α expression, and attenuated mitophagy. The absence of ATF5 resulted in a reduction in antioxidant proteins and increases in mitochondrial ROS emission, cytosolic cytochrome c, and the expression of mitochondrial chaperones. KO muscle also displayed enhanced exercise-induced stress kinase signaling, but a blunted mitophagic and UPRmt gene expression response, complemented by significant increases in the basal mRNA abundance and nuclear localization of ATF4. Instead of promoting its nuclear translocation, acute exercise caused the enrichment of ATF5 in mitochondrial fractions. We also identified PGC-1α as an additional regulator of the basal expression of UPRmt genes. CONCLUSION: The transcription factor ATF5 retains a critical role in the maintenance of mitochondrial homeostasis and the appropriate response of muscle to acute exercise for the optimization of mitochondrial quality control.


Assuntos
Mitocôndrias , Músculo Esquelético , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Ativadores da Transcrição/metabolismo
13.
Cell Rep ; 38(2): 110206, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021096

RESUMO

Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ácido Cítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Homeostase , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo
14.
J Genet Genomics ; 49(2): 89-95, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923165

RESUMO

There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.


Assuntos
Epigênese Genética , Padrões de Herança , Metilação de DNA , Epigênese Genética/genética , Epigenômica , Células Germinativas/metabolismo , Padrões de Herança/genética
15.
Autophagy ; 17(11): 3389-3401, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33416042

RESUMO

Mitochondrial quality control (MQC) balances organelle adaptation and elimination, and mechanistic crosstalk between the underlying molecular processes affects subsequent stress outcomes. FUNDC1 (FUN14 domain containing 1) is a mammalian mitophagy receptor that responds to hypoxia-reoxygenation (HR) stress. Here, we provide evidence that FNDC-1 is the C. elegans ortholog of FUNDC1, and that its loss protects against injury in a worm model of HR. This protection depends upon ATFS-1, a transcription factor that is central to the mitochondrial unfolded protein response (UPRmt). Global mRNA and metabolite profiling suggest that atfs-1-dependent stress responses and metabolic remodeling occur in response to the loss of fndc-1. These data support a role for FNDC-1 in non-hypoxic MQC, and further suggest that these changes are prophylactic in relation to subsequent HR. Our results highlight functional coordination between mitochondrial adaptation and elimination that organizes stress responses and metabolic rewiring to protect against HR injury.Abbreviations: AL: autolysosome; AP: autophagosome; FUNDC1: FUN14 domain containing 1; HR: hypoxia-reperfusion; IR: ischemia-reperfusion; lof: loss of function; MQC: mitochondrial quality control; PCA: principle component analysis; PPP: pentonse phosphate pathway; proK (proteinase K);UPRmt: mitochondrial unfolded protein response; RNAi: RNA interference.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas Mitocondriais/fisiologia , Mitofagia/fisiologia , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helmintos , Hipóxia/genética , Hipóxia/fisiopatologia , Mutação com Perda de Função , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas Mitocondriais/genética , Mitofagia/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Fatores de Transcrição/genética
16.
Cell Biosci ; 11(1): 186, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717757

RESUMO

In modern research, mitochondria are considered a more crucial energy plant in cells. Mitochondrial dysfunction, including mitochondrial DNA (mtDNA) mutation and denatured protein accumulation, is a common feature of tumors. The dysfunctional mitochondria reprogram molecular metabolism and allow tumor cells to proliferate in the hostile microenvironment. One of the crucial signaling pathways of the mitochondrial dysfunction activation in the tumor cells is the retrograde signaling of mitochondria-nucleus interaction, mitochondrial unfolded protein response (UPRmt), which is initiated by accumulation of denatured protein and excess ROS production. In the process of UPRmt, various components are activitated to enhance the mitochondria-nucleus retrograde signaling to promote carcinoma progression, including hypoxia-inducible factor (HIF), activating transcription factor ATF-4, ATF-5, CHOP, AKT, AMPK. The retrograde signaling molecules of overexpression ATF-5, SIRT3, CREB, SOD1, SOD2, early growth response protein 1 (EGR1), ATF2, CCAAT/enhancer-binding protein-d, and CHOP also involved in the process. Targeted blockage of the UPRmt pathway could obviously inhibit tumor proliferation and metastasis. This review indicates the UPRmt pathways and its crucial role in targeted therapy of metastasis tumors.

17.
Cells ; 7(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104535

RESUMO

Mitochondria⁻nucleus (mitonuclear) retrograde signaling via nuclear import of otherwise mitochondrial targeted factors occurs during mitochondrial unfolded protein response (UPRmt), a mechanism that counters mitochondrial and cellular stresses. Other than nuclear encoded proteins, mitochondrial DNA (mtDNA)-encoded peptides, such as humanin, are known to have important pro-survival and metabolic regulatory functions. A recent report has indicated that another mtDNA-encoded peptide, the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), could translocate into the nucleus upon stress induction. In the nucleus, MOTS-c binds to DNA and regulates the transcription of stress response genes in concert with other transcription factors. This is the first clear example of a mitochondria-derived peptide (MDP) acting in the nucleus to affect transcriptional responses to stress. Thus, MOTS-c may bear some characteristics of a 'mitokine' factor that mediates mitohormesis, influencing cell survival as well as organismal health and longevity.

18.
Cells ; 7(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501123

RESUMO

Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.

19.
Redox Biol ; 8: 430-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27208630

RESUMO

Mice deficient in the electron transport chain (ETC) complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPR(MT)) and increased mitochondrial number. We hypothesized that the upregulation of proteins associated with the UPR(MT) in response to reduced cytochrome c oxidase activity in Surf1(-/-) mice might contribute to increased stress resistance. To test this hypothesis we asked whether primary cultures of fibroblasts from Surf1(-/-) mice exhibit enhanced resistance to stressors compared to wild-type fibroblasts. Here we show that primary dermal fibroblasts isolated from Surf1(-/-) mice have increased expression of UPR(MT) components ClpP and Hsp60, and increased expression of Lon protease. Fibroblasts from Surf1(-/-) mice are significantly more resistant to cell death caused by oxidative stress induced by paraquat or tert-Butyl hydroperoxide compared to cells from wild-type mice. In contrast, Surf1(-/-) fibroblasts show no difference in sensitivity to hydrogen peroxide stress. The enhanced cell survival in response to paraquat or tert-Butyl hydroperoxide in Surf1(-/-) fibroblasts compared to wild-type fibroblasts is associated with induced expression of Lon, ClpP, and Hsp60, increased maximal respiration, and increased reserve capacity as measured using the Seahorse Extracellular Flux Analyzer. Overall these data support a protective role for the activation of the UPR(MT) in cell survival.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética
20.
Neurosci Lett ; 588: 166-71, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25576703

RESUMO

Many evidences strongly suggest that a mitochondrial deficit is implicated in major depression. A mitochondrial deficit leads to mitochondrial stress responses, including the mitochondrial unfolded protein response (UPRmt), which is associated with certain brain disorders such as spastic paraplegia and Parkinson's disease. However, there is no evidence regarding the relationship between depressive disorder and UPRmt. Mice treated with chronic restraint stress showed significant depressive-like behaviors in the tail suspension and forced swim tests, decreased oxygen consumption rate, and increased levels of molecules associated with UPRmt such as Hspa9, Hspd1, Ubl5, Abcb10, and ClpP. All of the UPRmt-related molecules were significantly correlated with depressive-like behavior in the forced swim test. Thus, the present study is to reveal a relationship between the UPRmt and depressive disorder, suggesting that the UPRmt is a potential drug target for depressive disorders.


Assuntos
Depressão/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Encéfalo/metabolismo , Depressão/etiologia , Depressão/psicologia , Peroxidação de Lipídeos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Restrição Física , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA