Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Comput Chem ; 45(7): 392-404, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014502

RESUMO

Molecular quantum-dot cellular automata (QCA) is a low-power computing paradigm that may offer ultra-high device densities and THz-speed switching at room temperature. A single mixed-valence (MV) molecule acts as an elementary QCA device known as a cell. Cells coupled locally via the electrostatic field form logic circuits. However, previously-synthesized ionic MV molecular cells are affected by randomly-located, nearby neutralizing counterions that can bias device states or change device characteristics, causing incorrect computational results. This ab initio study explores how non-biasing counterions affect individual molecular cells. Additionally, we model two novel neutral, zwitterionic MV QCA molecules designed to avoid biasing and other undesirable counterionic effects. The location of the neutralizing counterion is controlled by integrating one counterion into each cell at a well-defined, non-biasing location. Each zwitterionic QCA candidate molecule presented here has a fixed, integrated counterion, which neutralizes the mobile charges used to encode the device state.

2.
Chemistry ; 30(42): e202401417, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38970532

RESUMO

An asymmetric mixed valence fluorophore with two different electron rich termini was investigated as a dual-role active material for electrochromism and electrofluorochromism. The fluorescence quantum yield (Φfl) and emission wavelength of the fluorophore were dependent on solvent polarity. The quantum yield of the material in an electrolyte gel, on a glass substrate and in a device was 40 %, 20 % and 13 % respectively. The fluorophore further underwent two near-simultaneous electrochemical oxidations. The first oxidation resulted in a 1000 nm red shift in the absorption to broadly absorb in the NIR, corresponding to the intervalence charge transfer (IVCT). Whereas the second oxidation led to a perceived green color at 715 nm with the extinction of the NIR absorbing IVCT. Owing to the dissymmetry of the fluorophore along with its two unique oxidation sites, the IVCT gives rise to a mixed valence transfer charge (MVCT). The coloration efficiency of the fluorophore in both solution and a device was 1433 and 200 cm2 C-1, respectively. The fluorescence intensity could be reversibly modulated electrochemically. The photoemission intensity of the fluorophore was modulated with applied potential in an operating electrochromic/electrofluorochromic device. Both the dual electrochromic and the electrofluorochromic behavior of the fluorophore were demonstrated.

3.
Environ Res ; 258: 119441, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901813

RESUMO

Water pollution has caused problems in coastal areas, rivers, lakes, and other important water sources around the world as a result of inappropriate waste management. Meanwhile, these pollutants are harmful to humans and aquatic life. Textile dye effluent methyl orange (MO) was used in this work for dye degradation studies employing nanocomposites. As a result, the importance of synthesizing pure ZnO and Co3O4 nanoparticles with composites of ZnCo2O4 (zinc cobaltite) nanorods in three various proportions (90:10, 75:25, and 50:50) is emphasized in this study. Many advanced approaches were used to assess the various features of these materials, including size and shape. Fourier transform infrared (FT-IR) spectroscopy was used to determine the vibrational modes of the materials. The absorption measurements were then carried out using UV-vis spectroscopic techniques, and the photocatalytic breakdown of MO was done under visible light irradiation. The findings revealed that pure materials were inadequate for visible light activity, resulting in decreased degradation efficiencies. Spinel cobaltite structures have potential degradation efficiency under visible light, while ZnCo2O4 (50:50) catalyst has superior degradation efficiency of 59.8% over MO. The crystallite size, morphology, functional group, absorption wavelength, and band gap all play important roles in enhancing the material's photocatalytic activity under visible light. Meanwhile, ZnCo2O4 spinel structures are crucial for increasing charge carriers and reducing electron-hole recombination. As a result, zinc cobaltite minerals are widely used in industrial dye degradation applications.


Assuntos
Compostos Azo , Nanotubos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Nanotubos/química , Compostos Azo/química , Cobalto/química , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos/química , Óxido de Zinco/química
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468650

RESUMO

This work explores the concept that differential wave function overlap between excited states can be engineered within a molecular chromophore. The aim is to control excited state wave function symmetries, so that symmetry matches or mismatches result in differential orbital overlap and define low-energy trajectories or kinetic barriers within the excited state surface, that drive excited state population toward different reaction pathways. Two donor-acceptor assemblies were explored, where visible light absorption prepares excited states of different wave function symmetry. These states could be resolved using transient absorption spectroscopy, thanks to wave function symmetry-specific photoinduced optical transitions. One of these excited states undergoes energy transfer to the acceptor, while another undertakes a back-electron transfer to restate the ground state. This differential behavior is possible thanks to the presence of kinetic barriers that prevent excited state equilibration. This strategy can be exploited to avoid energy dissipation in energy conversion or photoredox catalytic schemes.

5.
Mikrochim Acta ; 191(8): 478, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039252

RESUMO

Fe-MOFs of mixed valence was synthesized by a solvothermal method via the in-situ reduction of ethylene glycol (EG) pre-coordination with the proper ratio of Fe2+/Fe3+ between 0.83 and 2.46. Synchronously with copper introduction, the Fe/Cu MOFs of mixed valence (Fe/Cu-MVMOFs) was then one pot acquired to remarkably improve the affinity of Fe2+ and Cu+ to H2O2 and promote the conversion efficiency of Fe2+/Fe3+ via the electron transfer among Fe-Cu bimetal clusters (XPS and XRD). Hence, the maximum reaction rate of H2O2 with Fe/Cu-MVMOFs reached 16.65 M·s-1, along with Km as low as 0.0479 mM. H2O2 and glutathione (GSH) were efficiently detected, ranging from 0.25 to 60 µM and from 0.2 to 40 µM, respectively. The investigation of catalyzation selectivity and practical serum detection by Fe/Cu-MVMOFs illustrated the efficacy and efficiency, denoting Fe/Cu-MVMOFs as the promising peroxidase candidate.

6.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338337

RESUMO

Two types of isostructural iron-cobalt/nickel-antimony-oxo tartrate cluster-based compounds, namely (H3O)(Me2NH2)[M(H2O)6]2[FeII2SbIII12(µ4-O)3(µ3-O)8(tta)6]·6H2O (M = Co (1); Ni (3)), H5/3[Co2.5FeII4/3FeIII3(H2O)13SbV1/3FeIII2/3(µ4-O)2(µ3-O)4SbIII6(µ3-O)2(tta)6]·2H2O (2) and H2[Ni2.25FeII1.5FeIII3(H2O)14SbV0.25FeIII0.75(µ4-O)2(µ3-O)4SbIII6(µ3-O)2(tta)6]·2H2O (4) (H4tta = tartaric acid) were synthesized via simple solvothermal reactions. All the clusters in the structures adopt sandwich configurations, that is, bilayer sandwich configuration in 1 and 3 and monolayer sandwich configuration in 2 and 4. Interestingly, the monolayer sandwiched compounds 2 and 4 represent rare examples of cluster-based compounds containing mixed-valence Sb(III, V), whose center of the intermediate layer is the co-occupied [FexSbV1-x]. This is different from that of previously reported sandwich-type antimony-oxo clusters in which the center position is either occupied by a transition metal ion or a Sb(V) alone. Thus, the discovery of title compounds 2 and 4 makes the evolution of center metal ion more complete, that is, from M, MxSbV1-x to SbV. All the title compounds were fully characterized, and the photocatalysis, proton conduction and magnetism of compounds 2 and 4 were studied.

7.
Angew Chem Int Ed Engl ; : e202407743, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923687

RESUMO

Polyoxometalates (POMs) are nanosized molecular metal oxide anion clusters with tuneable structures and functionalities, and they exhibit a redox chemistry and catalytic activity in multielectron redox processes. These are typically poor electrical conductors (<10-10 Scm-1), which is attributed to negligible electronic interactions among anions in the solid state. Since the reduced electrons on the d0 metals in POMs are delocalized, electrical conductivity was improved when judicious pathways for the electrons were created by bridging the POMs. Utilized with the electronic interactions between bridging oxygen atoms with the highest occupied molecular orbital in the POMs and the metal dz2 orbitals in the multinuclear platinum complexes, and three mixed-valent assemblies were synthesized and characterized. Simply mixing Keggin-type or Dawson-type POMs with tetranuclear or trinuclear platinum complexes in solution afforded three single crystals, and all three compounds were paramagnetic with mixed oxidation states and better conductivities at room temperature than the parent compounds.

8.
Angew Chem Int Ed Engl ; : e202413616, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163166

RESUMO

This study reports the serendipitous discovery of intermolecular anionic mixed-valence (MV) and π-dimer species in ortho-pentannulated BisAzaCoroneneDiimides (BACDs) during their electrochemical reduction in a non-aqueous solvent. A library of nitrogen-containing extended PDIs was synthesized via an aza-benzannulation reaction followed by a Pd-catalysed ortho-pentannulation reaction. Ortho-pentannulated BACDs revealed strong aggregation abilities in solution. Concentration-dependent UV-vis absorption spectra, variable temperature 1H NMR experiments, and atomic force microscopy coupled to molecular dynamics support their self-assembly into columnar aggregates. Cyclic voltammetry experiments in dichloromethane reveal prominent splitting of the first reduction wave, attributed to the formation of unprecedented intermolecular anionic MV and π-dimers in organic solvent. These species were thoroughly characterized by real-time spectroelectrochemistry, electrochemical simulations and theoretical calculations. Remarkably, this work underscores the tuneable nature of AzaBenzannulatedPerylene Diimides (AzaBPDIs) and BACDs, emphasizing their potential as a promising scaffold for designing supramolecular materials with long-range radical anion delocalization. The observation of this phenomenon provides insights into the fundamental behaviour of supramolecular organic semiconductors, thereby paving the way for the development of novel electronic devices and electron-deficient materials.

9.
Chemistry ; 29(15): e202203598, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36527171

RESUMO

Charge-transfer (CT) engineering with inter-/intramolecular CT interactions by simple compositions has emerged as a universal and efficient way to construct organic functional materials. Stable organic radicals with unique physicochemical properties that cannot be realized in closed-shell molecules, have been widely demonstrated to be ideal building blocks to construct versatile organic CT materials. This concept article provides a brief overview of the advances in the design, structure and property of stable organic radicals-based CT molecular functional materials, and the strategy for the generation of these materials is also highlighted. First, radicals are introduced as open-shell donors or acceptors, with a focus on their importance and uniqueness in improving electrical, magnetic and optical properties of CT functional materials. Additionally, CT interactions in stable radical dimers and trimers are further discussed systematically. Finally, the challenges are summarized and perspectives for future development of stable organic radicals-based CT functional materials are provided.

10.
Chemistry ; 29(52): e202301438, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402228

RESUMO

Neutral [X-{Ir2 }-{Ir2 }-X] (X=Cl, Br, SCN, I) and dicationic [L-{Ir2 }-{Ir2 }-L]2+ (L=MeCN, Me2 CO) tetrametallic iridium chains made by connecting two dinuclear {Ir2 } units ({Ir2 }=[Ir2 (µ-OPy)2 (CO)4 ], OPy=2-pyridonate) by an iridium-iridium bond are described. The complexes exhibit fractional averaged oxidation states of +1.5 and electronic delocalization along the metallic chain. While the axial ligands do not significantly affect the metal-metal bond lengths, the metallic chain has a significant impact on the iridium-L/X bond distances. The complexes show free rotation around the unsupported iridium-iridium bond in solution, with a low-energy transition state for the chloride chain. The absorption spectra of these complexes show characteristic bands at 438-504 nm, which can be fine-tuned by varying the terminal capping ligands.

11.
Chemistry ; 29(43): e202301250, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194969

RESUMO

A new type of neutral mixed-valence system was synthesized using a facile one-pot procedure. The spiro-conjugated framework is additionally "fastened" with a biphenyl bridge, which does not directly participate in spin delocalization but makes the molecule stable and influences the reorganization energy and the energy barrier of the intramolecular electron transfer. The in-depth experimental and quantum-chemical study allowed determining the radicals as the Class II Robin-Day-mixed-valence systems. The structure of the radicals was confirmed by the X-ray data, which are relatively rare for Class II MV molecules. Advanced properties of the radicals, such as an ambipolar redox behavior and panchromatic absorption in the visible and NIR regions, along with their stability, make them of interest for materials science. All radicals demonstrate the SOMO-HOMO inversion phenomenon, which was supported by the DFT and the experimental study.

12.
Chemistry ; 29(11): e202203115, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36333273

RESUMO

Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2  S cm-1 and 10-2 -10-3  S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.

13.
Chemistry ; 29(58): e202300433, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526193

RESUMO

A series of trimetallic cyanidometal-bridged compounds [Men Cp(dppe)FeII -(µ-NC)-RuII (MeOpy)4 -(µ-CN)-FeII (dppe)CpMen ] - [PF6 ]2 (N[PF6 ]2 , n=0, N =1; n=1, N=2; n=3, N=3; Cp=cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, MeOpy=4-methoxypyridine) and their one- and two-electron oxidized compounds N3+ and N4+ were synthesized and characterized. Meanwhile, a series of corresponding linear cyanido-bridged pentanuclear compounds [Men Cp(dppe)FeIII -(µ-NC)-RuII (MeOpy)4 -(µ-NC)-AgI -(µ-CN)-RuII (MeOpy)4 -(µ-CN)-FeIII (dppe)CpMen ][BF4 ]5 (M[BF4 ]5 , n=0, M=4; n=1, M=5; n=3, M=6) were also obtained and well characterized. The investigations suggest that in the trinuclear system there exists remote interaction between the two Fe centers, but no significant interactions exist across the central silver unit between the metals on the two sides of the silver center in the pentanuclear system. In both the trinuclear N4+ and the pentanuclear M5+ complexes, there exists the neighboring RuII →FeIII MM'CT transitions, and the MM'CT energy in the corresponding trinuclear system is higher than those in the pentanuclear system in which no remote metal-metal interaction occurs. Meanwhile, as the substituted methyl groups on the cyclopentadiene increases, the redox potential of the ruthenium in the trinuclear N4+ series increases, but that in the pentanuclear M5+ complexes decreases.

14.
Chemistry ; 29(9): e202203199, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394123

RESUMO

Hydrogen-bonding interactions are assumed to play a critical role in the long-range transport of light or charge recently observed in supramolecular assemblies of C3 -symmetrical discotic molecules. Herein, the structure of mixed valence assemblies formed by irradiating triarylamine trisamide (TATA) molecules was determined by multifarious techniques under various conditions with the aim of probing the interplay between the hydrogen bonding network and the rate of electron transport in different states (solution, gel, film). Irradiation was performed under initial states that vary by the degree of association of TATA monomers through hydrogen bonds. Firstly, a significant shift of the N-H and C=O stretching frequencies was observed by FTIR upon irradiation thus revealing an overlooked signature of TATA⋅+ species and interacting mixed valence aggregates. Secondly, gels and films both mostly consist of hydrogen-bonded TATA polymers but their EPR spectra recorded at 293 K reveal very different behaviors: localized electrons in the gels versus fully delocalized electrons in the films. Hydrogen bonding thus appears as a necessary but not sufficient condition to get fast electron transfer rates and a packing of the TATA monomers particularly suitable for charge transport is assumed to exist in the solid state. Finally, defects in the hydrogen bonding network are detected upon increasing the number of radical species in the mixed valence assemblies present in the film state without impeding the delocalization of the unpaired electrons. A delicate balance between hydrogen bonds and packing is thus necessary to get supramolecular polarons in mixed valence TATA assemblies.

15.
Chemistry ; 29(58): e202302130, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37681691

RESUMO

Numerous synthetic models of the FeMo-co cluster of nitrogenases have been proposed to find the simplest structure with relevant reactivity. Indeed, such structures are able to perform multi-electrons reduction processes, such as the conversion of N2 to ammonia, and of CO2 into methane and alkenes. The most challenging parameter to imitate is indeed the central carbide ligand, which is believed to maintain the integrity of iron sulfide assembly during the course of catalytic cycles. The study proposes the use of bis(diphenylthiophosphinoyl)methanediide (SCS)2- as an ideal platform for the synthesis of bi- and tetra-metallic iron complexes, in which the iron-carbon interaction is maintained upon structural diversification and redox state changes.

16.
Chemphyschem ; 24(18): e202300242, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37369624

RESUMO

The electronic properties, in particular, the occupation number of 5f electrons and the valence state of U ions in uranium sesquinitride (U2 N3 ) are studied by using density functional theory (DFT) calculations merged with dynamical mean-field theory (DMFT). The results demonstrate that j=5/2 and j=7/2 manifolds are in the weakly correlated metallic and weakly correlated insulating regimes, respectively. The quasi-particle weights indicate that LS coupling scheme is more feasible for 5f electrons, which are not in the orbital-selective localized state. The weighted summation of the occupation probabilities of 5fn (n=0,1,2,3,4) atomic configurations suggests that 5f electrons have the inter-configuration fluctuation, or the mixed-valence state for U ions, together with an average occupation number of 5f electrons n5f ∼2.234, which is in good agreement with the electron localization function (ELF) and occupation analysis based on other DFT-based calculations. The 5fn -mixing-driven inter-configuration fluctuation might originate from the dual nature of 5f electrons, and the flexible electronic configuration of U ions. Finally, the so-called quasiparticle band structure is also discussed.

17.
Angew Chem Int Ed Engl ; 62(49): e202314006, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37847644

RESUMO

Mixed-valence (MV) dimers have been extensively investigated, however, the structure and properties of purely organic MV trimers based on open-shell polycyclic aromatic hydrocarbons remain elusive. Herein, unprecedented MV BN-doped corannulene radical cations [BN-Cor1]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- and [BN-Cor2]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- were synthesized via chemical oxidation, and their structures were unambiguously confirmed by single-crystal X-ray diffraction. These uncommon radical cations consist of three corannulene cores and two [BArylF 4 ]- anions, and three corannulene motifs [BN-Cor1]3 ⋅⋅2+ and [BN-Cor2]3 ⋅⋅2+ in the unit cell exhibit a trimer structure with a slipped π-stacking configuration. Detailed structural analyses further revealed that the corannulene cores exhibit an infinite layered self-assembly configuration, allowing their potential applications as building blocks for molecular conductors. The detection of a forbidden transition (Δms =±2) by electron paramagnetic resonance (EPR) spectroscopy further confirmed the existence of two unpaired electrons in the π-trimers and the MV characteristic of these two species. Variable-temperature EPR and conductivity measurements suggested that the BN-doped π-trimers exhibited antiferromagnetic coupling and conductivity properties.

18.
Angew Chem Int Ed Engl ; 62(15): e202217082, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691301

RESUMO

Compounds and complexes with mixed-valence electronic ground states, such as the Creutz-Taube ion, have proven to be excellent vehicles through which to study intramolecular electron-transfer processes. In a recent contribution by Cadranel and co-workers, time-resolved pump-probe spectroscopy reveals photo-induced metal-to-bridge charge transfer within the homovalent analogue of the Creutz-Taube ion, [{(NH3 )5 Ru}(µ-pz){Ru(NH3 )5 }]4+ , giving rise to two closely lying excited states with mixed-valence character, one with a shorter lifetime (τ=136 ps) and weakly-coupled (Robin-Day Class II) character, the other a longer-lived (τ=2.8 ns) configurational isomer with more delocalized electronic structure. Electron transfer reactions from the longer-lived species demonstrate analogies with the photo-induced reactions of the photosynthetic special pair, suggesting this state as a reference system for excited state mixed-valency, and a framework from which to explore photocatalytic reactions.

19.
Angew Chem Int Ed Engl ; 62(50): e202312494, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703211

RESUMO

We report two novel three-dimensional copper-benzoquinoid metal-organic frameworks (MOFs), [Cu4 L3 ]n and [Cu4 L3 ⋅ Cu(iq)3 ]n (LH4 =1,4-dicyano-2,3,5,6-tetrahydroxybenzene, iq=isoquinoline). Spectroscopic techniques and computational studies reveal the unprecedented mixed valency in MOFs, formal Cu(I)/Cu(III). This is the first time that formally Cu(III) species are witnessed in metal-organic extended solids. The coordination between the mixed-valence metal and redox-non-innocent ligand L, which promotes through-bond charge transfer between Cu metal sites, allows better metal-ligand orbital overlap of the d-π conjugation, leading to strong long-range delocalization and semiconducting behavior. Our findings highlight the significance of the unique mixed valency between formal Cu(I) and highly-covalent Cu(III), non-innocent ligand, and pore environments of these bench stable Cu(III)-containing frameworks on multielectron transfer and electrochemical properties.

20.
Angew Chem Int Ed Engl ; 62(25): e202302049, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37021737

RESUMO

Phosphate tungsten and molybenum bronzes represent an outstanding class of materials displaying textbook examples of charge-density-wave (CDW) physics among other fundamental properties. Here we report on the existence of a novel structural branch with the general formula [Ba(PO4 )2 ][Wm O3m-3 ] (m=3, 4 and 5) denominated 'layered monophosphate tungsten bronzes' (L-MPTB). It results from thick [Ba(PO4 )2 ]4- spacer layers disrupting the cationic metal-oxide 2D units and enforcing an overall trigonal structure. Their symmetries are preserved down to 1.8 K and the compounds show metallic behaviour with no clear anomaly as a function of temperature. However, their electronic structure displays the characteristic Fermi surface of previous bronzes derived from 5d W states with hidden nesting properties. By analogy with previous bronzes, such a Fermi surface should result into CDW order. Evidence of CDW order was only indirectly observed in the low-temperature specific heat, giving an exotic context at the crossover between stable 2D metals and CDW order.


Assuntos
Temperatura Baixa , Tungstênio , Eletrônica , Temperatura Alta , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA