Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2223371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357335

RESUMO

OBJECTIVE: Magnetic nanowires (MNWs) are potential candidates for heating in biomedical applications that require rapid and uniform heating rates, such as warming cryopreserved organs and hyperthermia treatment of cancer cells. Therefore, it is essential to determine which materials and geometries will provide the optimal heating using available alternating magnetic fields (AMF). METHOD: Micromagnetic simulations are used to investigate the heating ability of MNWs by predicting their hysteretic behavior. MNWs composed of iron (Fe), nickel (Ni), cobalt (Co) or permalloy (FeNi alloy, Py) with different diameters (10-200 nm) are simulated using object oriented micromagnetic framework (OOMMF). RESULTS: Hysteresis loops are obtained for each simulated MNW, and the 2D/3D magnetic moment map is simulated to show the reversal mechanism. The heating ability, in terms of specific loss power (SLP), is calculated from the area of the hysteresis loop times frequency for each MNW for comparison with others. CONCLUSION: It is estimated that a theoretical optimal heating ability of 2730 W/g can be provided by isolated Co MNWs with 50 nm diameters using a typical AMF system that can supply 72 kA/m field amplitude and 50 kHz in frequency. Generalized correlation between coercivity and size/material of MNWs is provided as a guidance for researchers to choose the most appropriate MNW as a heater for their AMF system and vice versa.


Assuntos
Hipertermia Induzida , Nanofios , Calefação , Magnetismo , Campos Magnéticos
2.
Int J Hyperthermia ; 39(1): 697-705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469518

RESUMO

Thermal dose models are metrics that quantify the thermal effect on tissues based on the temperature and the time of exposure. These models are used to predict and control the outcome of hyperthermia (up to 45°C) treatments, and of thermal coagulation treatments at higher temperatures (>45°C). The validity and accuracy of the commonly used models (CEM43) are questionable when heating above the hyperthermia temperature range occurs, leading to an over-estimation of the accumulation of thermal damage. A new CEM43 dose model based on an Arrhenius-type, Vogel-Tammann-Fulcher, equation using published data, is introduced in this work. The new dose values for the same damage threshold that was produced at different in-vivo skin experiments were in the same order of magnitude, while the current dose values varied by two orders of magnitude. In addition, the dose values obtained using the new model for the same damage threshold in 6 lesions in ex-vivo liver experiments were more consistent than the current model dose values. The contribution of this work is to provide new modeling approaches to inform more robust thermal dosimetry for improved thermal therapy modeling, monitoring, and control.


Assuntos
Hipertermia Induzida , Eletrocoagulação , Temperatura Alta , Fígado , Temperatura
3.
Int J Hyperthermia ; 38(1): 1149-1163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34376106

RESUMO

PURPOSE: To develop and validate a three-dimensional (3-D) computer model based on accurate geometry of an irrigated cardiac radiofrequency (RF) ablation catheter with microwave radiometry capability, and to test catheter performance. METHODS: A computer model was developed based on CAD geometry of a RF cardiac ablation catheter prototype to simulate electromagnetic heating, heat transfer, and computational fluid dynamics (blood flow, open irrigation, and natural convection). Parametric studies were performed; blood flow velocity (0-25 cm/s) and irrigation flow (0-40 ml/min) varied, both with perpendicular (PE) and parallel (PA) catheter orientations relative to tissue. Tissue Agar phantom studies were performed under similar conditions, and temperature maps were recorded via infrared camera. Computer model simulations were performed with constant voltage and with voltage adjusted to achieve maximum tissue temperatures of 95-105 °C. RESULTS: Model predicted thermal lesion width at 5 W power was 5.8-6.4 mm (PE)/6.5-6.6 mm (PA), and lesion depth was 4.0-4.3 mm (PE)/4.0-4.1 mm (PA). Compared to phantom studies, the mean errors of the computer model were as follows: 6.2 °C(PE)/4.3 °C (PA) for maximum gel temperature, 0.7 mm (10.9%) (PE)/0.1 mm (0.8%) (PA) for lesion width, and 0.3 mm (7.7%)(PE)/0.7 mm (19.1%) (PA) for lesion depth. For temperature-controlled ablation, model predicted thermal lesion width was 7-9.2 mm (PE)/8.6-9.2 mm (PA), and lesion depth was 4.3-5.5 mm (PE)/3.4-5.4 mm (PA). CONCLUSIONS: Computer models were able to reproduce device performance and to enable device evaluation under varying conditions. Temperature controlled ablation of irrigated catheters enables optimal tissue temperatures independent of patient-specific conditions such as blood flow.


Assuntos
Ablação por Cateter , Catéteres , Simulação por Computador , Coração , Humanos , Temperatura
4.
Int J Hyperthermia ; 37(3): 155-163, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426993

RESUMO

Convective transport is an important phenomenon for nanomedicine delivery. We present an imaging-based approach to recover tissue properties that are significant in the accumulation of nanoparticles delivered via systemic methods. The classical pharmacokinetic analysis develops governing equations for the particle transport from a first principle mass balance. Fundamentally, the governing equations for compartmental mass balance represent a spatially invariant mass transport between compartments and do not capture spatially variant convection phenomena. Further, the parameters recovered from this approach do not necessarily have direct meaning with respect to the governing equations for convective transport. In our approach, a framework is presented for directly measuring permeability in the sense of Darcy flow through porous tissue. Measurements from our approach are compared to an extended Tofts model as a control. We demonstrate that a pixel-wise iterative clustering algorithm may be applied to reduce the parameter space of the measurements. We show that measurements obtained from our approach are correlated with measurements obtained from the extended Tofts model control. These correlations demonstrate that the proposed approach contains similar information to an established compartmental model and may be useful in providing an alternative theoretical framework for parameterizing mathematical models for treatment planning and diagnostic studies involving nanomedicine where convection dominated effects are important.


Assuntos
Convecção , Nanopartículas , Algoritmos , Modelos Teóricos , Porosidade
5.
Int J Hyperthermia ; 36(1): 702-711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31340697

RESUMO

Objective: To develop and evaluate a combined motion-assisted/gated MRHIFU heating strategy designed to accelerate the treatment procedure by reducing the required number of sonications to ablate a target volume in the pancreas. Methods: A planning method for combined motion-assisted/gated MRHIFU using 4D-MRI and motion characterization is introduced. Six healthy volunteers underwent 4D-MRI for target motion characterization on a 3.0-T clinical scanner. Using displacement patterns, simulations were performed for all volunteers for three sonication approaches: gated, combined motion-assisted/gated, and static. The number of sonications needed to ablate the pancreas head was compared. The influence of displacement amplitude and target volume size was investigated. Spherical target volumes (8, 15, 20 and 34 mL) and displacement amplitudes ranging from 5 to 25 mm were evaluated. For this case, the number of sonications required to ablate the whole target was determined. Results: The number of required sonications was lowest for a static target, 62 on average (range 49-78). The gated approach required most sonications, 126 (range 97-159). The combined approach was almost as efficient as the hypothetical static case, with an average of 78 (range 53-123). Simulations showed that with a 5-mm displacement amplitude, the target could be treated by making use of motion-assisted MRHIFU sonications only. In that case, this approach allowed the lowest number of sonication, while for 10 mm and above, the number of required sonications increased. Conclusion: The use of a combined motion-assisted/gated MRHIFU strategy may accelerate tumor ablation in the pancreas when respiratory-induced displacement amplitudes are between 5 and 10 mm.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Pâncreas/diagnóstico por imagem , Humanos , Pâncreas/cirurgia , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA