Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(36)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33902023

RESUMO

Theory is proposed for nanohole siliconpin/nipphotodetector (PD) physics, promising devices in the future data communications and lidar applications. Photons and carriers have wavelengths of 1µm and 5 nm, respectively. We propose vertical nanoholes having 2D periodicity with a feature size of 1µm will produce photons slower than those in bulk silicon, but carriers are unchanged. Close comparison to experiments validates this view. First, we study steady state nanohole PD current as a function of illumination power, and results are attributed to the voltage drop partitions in the PD and electrodes. Nanohole PD voltage drop depends on illumination, but series resistance voltage drop does not, and this explains experiments well. Next, we study transient characteristics for the sudden termination of light illumination. Nanohole PDs are much faster than flat PDs, and this is because the former produces much less slow diffusion minority carriers. In fact, most photons have already been absorbed in thei-layer in nanohole PDs, resulting in much less diffusion minority carriers at the bottom highly doped layer. Why diffusion in PDs is slow and that in bipolar junction transistors is quick is discussed in appendix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA