Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Helminthol ; 98: e25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509855

RESUMO

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Assuntos
Biomphalaria , Cucurbita , Moluscocidas , Esquistossomose , Animais , Schistosoma mansoni , Caramujos , Cercárias , Moluscocidas/farmacologia , Óleos de Plantas/farmacologia
2.
Exp Parasitol ; 247: 108481, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780972

RESUMO

Schistosomiasis is a parasitic infection of great prevalence worldwide, affecting 250 million people in 78 countries. Faced with this problem, studies that seek to analyze molluscicidal activity from plant extracts have stood out. The present work aimed to obtain the phytochemical characterization and investigate the molluscicidal activity in the hydroalcoholic extract of Ricinus communis leaves on Biomphalaria glabrata. The hydroalcoholic extract was prepared by macerated with solvent ethanol P.A 96%, followed by filtration and concentration in rotary evaporator. Next, five groups of snails with 10 animals each, one being the negative control group, were submitted to treatments with four concentrations of 25, 50, 75 and 100 mg/L of hydroalcoholic extract of R. communis. The parameters mortality, physiological and behavioral aspects of mollusks were analyzed during 96h. The chemical characterization of the extract was performed by high-performance liquid chromatography coupled to mass spectrometry (LC-MS). Chemical characterization revealed the presence of tannins, flavonoids and ricinin alkaloid, but under the conditions analyzed, the presence of saponins was not observed. There was no significant molluscicidal activity of the extract. However, a greater influence was observed in the diet, in addition to the motility and physiological state of the snails (alteration of cephalopodal mass and oviposition). The toxicity test was performed with Artemia salina and no toxicity was observed for this microcrustacean. It is expected that the results obtained contribute to the fight against the expansion of schistosomiasis and that they make room for other studies that investigate the molluscicidal action of plant extracts.


Assuntos
Biomphalaria , Euphorbiaceae , Moluscocidas , Esquistossomose , Animais , Feminino , Biomphalaria/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Moluscocidas/farmacologia , Compostos Fitoquímicos/farmacologia , Ricinus
3.
J Invertebr Pathol ; 198: 107920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023891

RESUMO

The brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum. Concentrations of 1 - 1000 ppm of 3-octanone were first assessed in laboratory choice assays to determine behavioural response. Repellent activity was found at 1000 ppm whereas attractance was found for the lower concentrations of 1, 10 and 100 ppm. These three concentrations of 3-octanone were carried forward in field evaluations to assess potential for use in "lure and kill" strategies. The highest concentration (100 ppm) was the most attractive to the snails but also the most lethal. Even at the lowest concentration this compound proved toxic effects making 3-octanone an excellent candidate for the development as a snail attractant and molluscicide.


Assuntos
Moluscocidas , Compostos Orgânicos Voláteis , Animais , Cetonas , Moluscocidas/farmacologia , Agricultura
4.
Ecotoxicol Environ Saf ; 263: 115272, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473704

RESUMO

Pyriclobenzuron 1(PBU) is a novel molluscicide developed to control Pomacea canaliculate, and little information on its environmental fate has been published. In this study, the photolysis of PBU in an aqueous environment was simulated using a xenon lamp. Results showed that the photolysis of PBU in water followed first-order kinetics, exhibiting a t0.5 of 95.1 h and 83.6 h in Milli-Q water and river water, respectively. Two main photolysis products 2(PPs) were detected by HPLC-UV and identified by UPLC-Q/TOF MS, which were formed via the hydroxylation and photocatalytic hydro-dehalogenation of PBU, respectively. The initial relative abundance of photolysis product 1 3(PP-1) in Milli-Q water was 1.55 times higher than that in river water. PP-1 was detected at 26.5 % and 76.8 % of the maximum relative abundance in the river water and Milli-Q water after 720 h, respectively. Photolysis product 2 4(PP-2) was stable in water because of its weak hydrophilicity. The PP-2 detected after 720 h in Milli-Q water and river water was 93.7 % and 93.5 % of the maximum relative abundance, respectively. Finally, ECOSAR software was used to evaluate the acute aquatic toxicity of PBU and its PPs, revealing that the PPs had lower toxicity levels to non-target aquatic organisms.


Assuntos
Luz Solar , Poluentes Químicos da Água , Cinética , Água , Fotólise , Poluentes Químicos da Água/toxicidade
5.
Pestic Biochem Physiol ; 191: 105357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963932

RESUMO

Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.


Assuntos
Biomphalaria , Moluscocidas , Saponinas , Animais , Biomphalaria/metabolismo , Schistosoma mansoni , Larva , Saponinas/toxicidade , Saponinas/metabolismo , Caramujos , Moluscocidas/toxicidade
6.
Mar Drugs ; 20(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35200640

RESUMO

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (-)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.


Assuntos
Anti-Helmínticos , Laurencia , Moluscocidas , Sesquiterpenos , Animais , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Larva , Laurencia/química , Moluscocidas/isolamento & purificação , Moluscocidas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia
7.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956946

RESUMO

Biomphalaria glabrata snails constitute the main vector of schistosomiasis in Brazil, and Bauhinia monandra Kurz, the leaves of which contain BmoLL lectin with biocidal action, is a plant widely found on continents in which the disease is endemic. This work describes the composition of B. monandra preparations and the effect on embryos and adult snails, their reproduction parameters and hemocytes. We also describe the results of a comet assay after B. glabrata exposure to sublethal concentrations of the preparations. Additionally, the effects of the preparations on S. mansoni cercariae and environmental monitoring with Artemia salina are described. In the chemical evaluation, cinnamic, flavonoid and saponin derivatives were detected in the two preparations assessed, namely the saline extract and the fraction. Both preparations were toxic to embryos in the blastula, gastrula, trochophore, veliger and hippo stages (LC50 of 0.042 and 0.0478; 0.0417 and 0.0419; 0.0897 and 0.1582; 0.3734 and 0.0974; 0.397 and 0.0970 mg/mL, respectively) and to adult snails (LC50 of 6.6 and 0.87 mg/mL, respectively), which were reproductively affected with decreased egg deposition. In blood cell analysis, characteristic cells for apoptosis, micronucleus and binucleation were detected, while for comet analysis, different degrees of nuclear damage were detected. The fraction was able to cause total mortality of the cercariae and did not present environmental toxicity. Therefore, B. monandra preparations are promising in combating schistosomiasis since they can control both the intermediate host and eliminate the infectious agent, besides being safe to the environment.


Assuntos
Bauhinia , Biomphalaria , Esquistossomose , Animais , Artemia , Folhas de Planta , Schistosoma mansoni
8.
J Invertebr Pathol ; 174: 107435, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561403

RESUMO

Many terrestrial gastropods are pestiferous and pose a significant threat to agriculture, horticulture and floriculture. They are usually controlled by metaldehyde based pellets but an alternative control method is the slug parasitic nematode Phasmarhabditis hermaphrodita, which has been formulated into a biological control agent (Nemaslug®) for use by farmers and gardeners to kill certain pestiferous slug species in 4-21 days. The current strain of P. hermaphrodita (called DMG0001) has been used in commercial production since 1994, but there is little information about the pathogenicity of wild strains of P. hermaphrodita towards slugs. Here, we exposed the pestiferous slug Deroceras invadens to nine wild isolated strains of P. hermaphrodita (DMG0002, DMG0003, DMG0005, DMG0006, DMG0007, DMG0008, DMG0009, DMG0010 and DMG0011) and the commercial strain (DMG0001) to three doses (0, 500 and 1000 nematodes per ml). Survival and feeding were recorded over 14 days. All wild P. hermaphrodita strains (other than DMG0010) and P. hermaphrodita (DMG0001), applied at 500 nematodes per ml, caused significant mortality to D. invadens compared to an uninfected control. Similarly, all P. hermaphrodita strains applied at 1000 nematodes per ml, caused significant mortality to D. invadens compared to an uninfected control. Overall, all wild P. hermaphrodita strains (other than DMG0011) caused significantly more mortality than P. hermaphrodita DMG0001 at one or both nematode concentrations. In summary, we have found some wild P. hermaphrodita strains were more virulent than P. hermaphrodita (DMG0001). Ultimately, these strains could potentially be developed as alternative, efficient biological control agents for use against slugs.


Assuntos
Gastrópodes/parasitologia , Controle Biológico de Vetores , Rhabditoidea/patogenicidade , Animais , Inglaterra , Virulência
9.
Parasitol Res ; 116(12): 3423-3427, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29046937

RESUMO

The molluscicidal activity of a novel molluscicide (niclosamidate) was evaluated in field trials against Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The environmental safety of niclosamidate for local fishes was also studied under field conditions. The results showed that, at the dosages of 8.0 g/m2 and 4.0 g/m3, niclosamidate exhibits highly potent molluscicidal activity in the spraying and immersion trials, resulting in mortality rates of up to 81.8 and 72.7%, respectively. Its performance seems to be target-specific, with good molluscicidal ability observed for Oncomelania hupensis snails, but very low toxicity for local fishes and other aquatic organisms. The results suggest that niclosamidate can be used as an alternative molluscicide for snail control, which would be particularly applicable in semi-commercial or commercial aquaculture ponds.


Assuntos
Caracois Helix/efeitos dos fármacos , Moluscocidas/farmacologia , Niclosamida/farmacologia , Salicilanilidas/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Animais , Peixe-Zebra
10.
Parasitol Res ; 115(11): 4139-4152, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27469534

RESUMO

A preparation of niclosamide named 50 % wettable powder of niclosamide ethanolamine salt (WPN), the only chemical molluscicide available in China, has been widely used for Oncomelania hupensis control over the past 20 years, but its molluscicidal mechanism has not been elucidated yet. Recently, a derivative of niclosamide, the salt of quinoid-2',5-dichloro-4'-nitro-salicylanilide (Liu Dai Shui Yang An, LDS), has been proven to have equivalent molluscicidal effects as WPN but with lower cost and significantly lower toxicity to fish than WPN. In our previous study, gene expression profiling of O. hupensis showed significantly effects after these two molluscicides had been applied. This study was designed to use morphological and enzymological analyses to further elucidate the mechanism by which these molluscicides cause snail death. After WPN or LDS treatment, the number of mitochondria of O. hupensis was reduced and their cristae appeared unclear, heterochromatin gathered to be polarized, ribosome numbers of the rough endoplasmic reticulums (rERs) decreased, myofilaments in muscle cells became disordered and loose, and cytoplasm in some liver cells was concentrated. Damage of cell structures and organelles suggested inhibited movement ability and effects on liver and energy metabolism following treatment. In parallel, activities of enzymes related with carbohydrate metabolism were inhibited except lactate dehydrogenase (LDH) increased in muscle tissue, and activities of enzymes related with stress response increased followed by decreasing to lower levels than those of the H2O-treated group. This shift of carbohydrate metabolism patterns led to insufficient energy supply and lactic acid accumulation, and variations of nitric oxide synthase (NOS), alanine aminotransferase (ALT), and superoxide dismutase (SOD) during process of molluscicide treatment suggested a stress response of snail to the molluscicides at early stages and later fatal damage in liver and nervous system. In general, effects of WPN and LDS were similar although LDS-treated snails showed more serious damage in the liver and a stronger inhibition of enzymes related with aerobic respiration and stress response. This was consistent with the transcriptome profile obtained previously. However, considering enzyme activities at post-transcriptional and protein levels, comprehensive identification and annotation of potential enzyme-related genes and regulation pattern would be necessary to provide great benefit for understanding of potential mechanism of these molluscicides and even for future molluscicide development.


Assuntos
Moluscocidas/farmacologia , Niclosamida/análogos & derivados , Salicilanilidas/farmacologia , Caramujos , Animais , China , Fígado/ultraestrutura , Caramujos/anatomia & histologia , Caramujos/enzimologia , Transcriptoma
11.
Biology (Basel) ; 13(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927309

RESUMO

Pomacea canaliculata, as an invasive exotic species in Asia, can adversely affect crop yields, eco-environment, and human health. Application of molluscicides containing metaldehyde is one effective method for controlling P. canaliculata. In order to investigate the effects of metaldehyde on adult snails, we conducted acute toxicological experiments to investigate the changes in enzyme activities and histopathology after 24 h and 48 h of metaldehyde action. The results showed that the median lethal concentrations (LC) of metaldehyde on P. canaliculata were 3.792, 2.195, 1.833, and 1.706 mg/L at exposure times of 24, 48, 72, and 96 h, respectively. Treatment and time significantly affected acetylcholinesterase (AChE), glutathione S-transferase (GST), and total antioxidant capacity (TAC) activity, with sex significantly affecting AChE, GST, and TAC activity and time significantly affecting carboxylesterase (CarE). In addition, the interaction of treatment and time significantly affected the activity of GST, CarE and TAC. In addition, histopathological changes occurred in the digestive glands, gills and gastropods of apple snail exposed to metaldehyde. Histological examination of the digestive glands included atrophy of the digestive cells, widening of the hemolymph gap, and an increase in basophils. In treated snails, the hemolymph gap in the gills was widely dilated, the columnar cells were disorganized or even necrotic, and the columnar muscle cells in the ventral foot were loosely arranged and the muscle fibers reduced. The findings of this study can provide some references for controlling the toxicity mechanism of invasive species.

12.
Sci Total Environ ; 922: 171165, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38395171

RESUMO

Despite the wide distribution and persistence of microplastics (MPs), their interactive effects with molluscicides are unknown. Schistosomiasis, a neglected tropical disease, affects 236.6 million people worldwide. Niclosamide (NCL) is the only molluscicide recommended by the World Health Organization (WHO) and it is used to control the population of Schistosoma spp.'s intermediate host. Thus, this study aimed to evaluate of the interaction between polyethylene (PE) MPs and NCL, and their associated toxicity in the freshwater snail Biomphalaria glabrata (Say 1818). Weathered PE MPs were characterized and theoretical analysis of NCL-MP adsorption nature was made using quantum mechanical calculations. The toxicity of NCL isolated (0.0265 to 0.0809 mg L-1) and under interaction with PE MPs (3400 µg L-1) in B. glabrata embryos and newly hatched snails was analyzed. In silico analysis confirmed the adsorption mechanisms of NCL into PE MPs. PE MPs decreased the NCL toxicity to both B. glabrata developmental stages, increasing their survival and NCL lethal concentrations, indicating concerns regarding NCL use as molluscicide in aquatic environments polluted by MPs. In conclusion, MPs may change the efficiency of chemicals used in snail control programs.


Assuntos
Moluscocidas , Niclosamida , Animais , Humanos , Niclosamida/toxicidade , Microplásticos , Plásticos/toxicidade , Caramujos , Moluscocidas/toxicidade
13.
Animals (Basel) ; 14(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38929407

RESUMO

The Asian clam Corbicula fluminea is a native aquatic species in Eastern Asia and Africa but has become one of the ecologically and economically harmful invasive species in aquatic ecosystems in Europe, North America, and South America. Due to their natural characteristics as a hermaphroditic species with a high fecundity and dispersal capacity, Asian clams are extremely difficult to eradicate once they have infiltrated a waterbody. This is an emerging issue for states in the Northeastern United States, as Asian clams expand their range farther North due to climate change. There has been extensive research conducted to develop chemical treatments for reactively controlling invasive mollusc populations and proactively preventing their further spread. However, treatments are mostly targeted toward biofouling bivalves in industrial settings. A comprehensive review of Asian clam chemical treatments used in natural open-water systems was performed to evaluate molluscicides and identify the toxicity ranges of emerging treatments that maximize Asian clam mortality and minimize the negative impact on water quality and non-target species. The potential chemical applications in Asian clam control and management are summarized in this report to assist resource managers and practitioners in invasive Asian clam management.

14.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893982

RESUMO

Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.

15.
Acta Trop ; 228: 106312, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35033504

RESUMO

This study describes for the first time the effect of saline extract and Parkia pendula seed fraction on Biomphalaria glabrata adult embryos and molluscs well as the reproductive parameters (fecundity and fertility) and survival, in addition to cytotoxicity and genotoxicity through the profile of blood cells after exposure to sublethal concentrations. Furthermore, we analyzed the action of both preparations against the cercariae of Schistosoma mansoni and their environmental safety using the bioindicator Artemia salina. The saline extract and fraction showed toxic effects for embryos (CL90 of 464.25, 479.62, 731.28, 643.28, 408.43 and 250.94, 318.03, 406.12, 635.64, 1.145 mg/mL, for blastula, gastrula, trocophore, veliger and hippo stage respectively), adult snails after 24 h of exposure (CL90 of 9.50 and 10.92 mg/mL, respectively) with increased mortality after 7 days of observation and significant decrease (p <0.05; p < 0.01 and p < 0.001) in egg mass deposition. At sublethal concentrations, an increase in quantitative and morphological changes in hemocytes was observed, and in the genotoxicity/comet assay analysis, varying degrees of nuclear damage were detected. In addition, the saline extract showed changes in the motility of the cercariae, while the fraction howed toxicity from a concentration of 1.0 mg/mL. The saline extract showed toxicity to A. salina at the highest concentrations (3.0, 4.0 and 5.0 mg/mL), while the fraction did not show ecotoxicity. Thus, the saline extract and fraction was promising in combating schistosomiasis by eliminating the intermediate host and causing alterations and/or mortality to the infectious agent.


Assuntos
Biomphalaria , Moluscocidas , Esquistossomose , Animais , Dano ao DNA , Moluscocidas/farmacologia , Extratos Vegetais/toxicidade , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Sementes
16.
Mol Biochem Parasitol ; 247: 111431, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813866

RESUMO

Angiostrongylus cantonensis is a zoonotic parasitic nematode that is the most common cause of human eosinophilic meningitis. The invasive apple snail Pomacea canaliculata is an important intermediate host of A. cantonensis and contributes to its spread. P. canaliculata control will help prevent its invasion and transmission of A. cantonensis. The new molluscicide PBQ (1-(4-chlorophenyl)-3-(pyridin-3-yl)urea) exhibits great potency against P. canaliculata and has low toxicity against mammals and non-target aquatic organisms. We studied the mode of action of PBQ using TMT-based comparative quantitative proteomics analysis between PBQ-treated and control P. canaliculata snails. A total of 3151 proteins were identified, and 245 of these proteins were significantly differentially expressed with 135 downregulated and 110 upregulated. GO and KEGG enrichment analyses identified GO terms and KEGG pathways involved in de novo purine biosynthesis, ribosome components and translation process were significantly enriched and downregulated. The results indicated that PBQ treatment had substantial effects on the synthesis of genetic material, translation process, and protein synthesis of P. canaliculata and were likely the main cause of snail mortality.


Assuntos
Angiostrongylus cantonensis , Gastrópodes , Infecções por Strongylida , Angiostrongylus cantonensis/genética , Animais , Humanos , Mamíferos , Proteômica
17.
J Agric Food Chem ; 70(4): 1079-1089, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060723

RESUMO

The golden apple snail Pomacea canaliculata is an invasive pest that causes extensive damage to agricultural production. P. canaliculata is also an intermediate host of Angiostrongylus cantonensis, which causes human eosinophilic meningitis. In this study, the molluscicidal activity and safety profile of a novel molluscicide PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl)urea] were evaluated. PBQ exhibited strong molluscicidal potency against adult and juvenile snails (LC50 values of 0.39 and 0.07 mg/L, respectively). In field trials, PBQ killed 99.42% of the snails at 0.25 g a.i./m2. An acute toxicity test in rats demonstrated that PBQ is a generally nonhazardous chemical. PBQ is also generally safe for nontarget organisms including Brachydanio rerio, Daphnia magna, and Apis mellifera L. Transcriptomics analysis revealed that PBQ had a significant impact on the carbohydrate and lipid metabolism pathways, which provided insights into its molluscicidal mechanism. These results suggest that PBQ could be developed as an effective and safe molluscicide for P. canaliculata control.


Assuntos
Angiostrongylus cantonensis , Moluscocidas , Infecções por Strongylida , Animais , Dose Letal Mediana , Moluscocidas/toxicidade , Ratos , Caramujos
18.
Sci Total Environ ; 834: 155299, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439509

RESUMO

Green nanoparticles (GNPs), mainly green silver nanoparticles (Ag NPs), have been recommended as sustainable and eco-friendly technologies to control vectors and intermediate hosts. The aim of the current study is to carry out a historical and systematic literature review about the use of green plant-based Ag NPs (GP-Ag NPs) to control medically important mosquito, tick and gastropods. Data about the number of studies published per year, geographical distribution of studies (mailing address of the corresponding author), synthesis type (plant species, plant structure and extract types), physicochemical properties of GP-Ag NPs, experimental designs, developmental stages and the toxic effects on mosquitoes, ticks and gastropods were summarized and discussed. Revised data showed that GP-Ag NPs synthesis and toxicity in mosquitoes, ticks and snails depend on plant species, plant part, extract types, exposure condition and on the analyzed species. GP-Ag NPs induced mortality, tissue damage, biochemical and behavioral changes in mosquitoes and reduced their fecundity, oviposition, egg hatching and longevity. Ticks exposed to GP-Ag NPs presented increased mortality and reduced oviposition, while on snails, studies demonstrated mortality, oxidative stress, and DNA damage. Immune responses were also observed in snails after their exposure to GP-Ag NPs. GP-Ag NPs reduced the reproduction and population of several vectors and intermediate hosts. This finding confirms their potential to be used in gastropod control programs. Future studies about current gaps in knowledge are recommended.


Assuntos
Culicidae , Nanopartículas Metálicas , Carrapatos , Animais , Feminino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Mosquitos Vetores , Extratos Vegetais/química , Plantas , Prata/química
19.
Trop Med Infect Dis ; 7(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288035

RESUMO

A new formulation (suspension concentrate, SC) of PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl) urea] was used in water network schistosomiasis-endemic areas to test its molluscicidal efficacy and the acute toxicity to crustaceans. PBQ (20% SC), 26% metaldehyde, and niclosamide suspension concentrate [MNSC (26% SC)] were used both in ditch and field experiments for the molluscicidal efficacy comparison. Acute toxicity tests of two molluscicides were conducted using Neocaridina denticulate and Eriocheir sinensis. Both in the field and ditch experiments, PBQ exhibited comparable molluscicidal efficacy with MNSC. At doses of 0.50 g/m3 and 0.50 g/m2, the snail mortalities were more than 90% three days after PBQ (20% SC) application. Compared with previous tests, PBQ (20% SC) exhibited higher molluscicidal activity than PBQ (25% wettable powder, 25% WP) used in Jiangling and showed similar mollucicidal activity to PBQ (25% WP) used in Dali and Poyang Lake. The 96 h LC50 value of MNSC against Eriocheir sinensis was 283.84 mg a.i./L. At the concentration of PBQ (20% SC) 1000 mg a.i./L, all Eriocheir sinensis were alive. The 96 h LC50 values of PBQ and MNSC against Neocaridina denticulate were 17.67 and 14.05 mg a.i./L, respectively. In conclusion, PBQ (20% SC) had a comparable molluscicidal efficacy with MNSC (26% SC) and PBQ (25% WP). Furthermore, it showed lower toxicity to the crustacean species, better solubility, no floating dust, and convenience for carriage. PBQ (20% SC) was suitable for controlling snails in the water network schistosomiasis-endemic areas.

20.
Phytochemistry ; 200: 113242, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35594948

RESUMO

The triterpenes represent one of the most reported subclasses of specialized metabolites from the plant kingdom. They play a key role in the protection of plants and their metabolism in addition to displaying a high structural diversity and large scale of biological activities. The scaffold can undergo several reactions like oxidation or substitution at different positions of the skeleton leading to the formation of several types of compounds. More specifically, triterpene dimer is a small group of compounds found in nature (from plants precisely). Until 2021, the chemical and pharmacological works reported in the literature indicated the identification of 90 natural dimeric triterpenes and 11 synthetic derivatives from 19 plants species and very few of them have been biologically evaluated for their antibacterial, antioxidant, antiproliferative or molluscicide activities. This review aims to compile the literature on the occurrence, chemistry and biological activities of the triterpenoid dimers. To attend this goal, a literature survey has been done in a number of online libraries including Scifinder, PubMed, Web of Science and Google Scholar using keywords terpene, triterpene, dimer, celastroloid without language restriction. This paper provides the easiest access to the information on triterpene dimers for readers and researchers in view to enhancing the continuity of research works on this topic.


Assuntos
Triterpenos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Plantas/química , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA