RESUMO
Apolipoprotein E4 (ApoE4) plays an important role responding to monomeric C-reactive protein (mCRP) via binding to CD31 leading to cerebrovascular damage and Alzheimer's disease (AD). Using phosphor-proteomic profiling, we found altered cytoskeleton proteins in the microvasculature of AD brains, including increased levels of hyperphosphorylated tau (pTau) and the actin-related protein, LIMA1. To address the hypothesis that cytoskeletal changes serve as early pathological signatures linked with CD31 in brain endothelia in ApoE4 carriers, ApoE4 knock-in mice intraperitoneal injected with mCRP revealed that mCRP increased the expressions of phosphorylated CD31 (pCD31) and LIMA1, and facilitate the binding of pCD31 to LIMA1. mCRP combined with recombinant APOE4 protein decreased interaction of CD31 and VE-Cadherin at adherens junctions (AJs), along with altered the expression of various actin cytoskeleton proteins, causing microvasculature damage. Notably, the APOE2 protein attenuated these changes. Overall, our study demonstrates that ApoE4 responds to mCRP to disrupt the endothelial AJs which link with the actin cytoskeleton and this pathway could play a key role in the barrier dysfunction leading to AD risk.
RESUMO
C-reactive protein (CRP) impacts apolipoprotein E4 (ApoE4) allele to increase Alzheimer's disease (AD) risk. However, it is unclear how the ApoE protein and its binding to LRP1 are involved. We found that ApoE2 carriers had the highest but ApoE4 carriers had the lowest concentrations of blood ApoE in both humans and mice; blood ApoE concentration was negatively associated with AD risk. Elevation of peripheral monomeric CRP (mCRP) reduced the expression of ApoE in ApoE2 mice, while it decreased ApoE-LRP1 binding in the brains of ApoE4 mice that was characterized by Proximity Ligation Assay. Both serum ApoE and brain ApoE-LRP1 binding were positively associated with the expression of pericytes that disappeared after mCRP treatment, and negatively associated with brain tauopathy and neuroinflammation in the presence of mCRP. In ApoE-/- mice, mCRP reduced the brain expression levels of synaptophysin and PSD95 and the positive relationship between ApoE-LRP1 binding and synaptophysin or PSD95 expression disappeared. Our study suggests that blood ApoE protects against AD pathogenesis by binding to LRP1 during peripheral chronic inflammation.
Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Sinaptofisina/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Apolipoproteína E3/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismoRESUMO
The high-sensitivity C-reactive protein (hsCRP) assay measures the level of the pentameric form of CRP in blood. Currently, there are no available assays measuring the level of the monomeric form of CRP (mCRP), produced at sites of local inflammation. We developed an assay measuring the mCRP level in blood plasma with functional beads for flow cytometry. The assay was used to measure the mCRP level in 80 middle-aged individuals with initially moderate cardiovascular SCORE risk. By the time of the mCRP measurement, the patients have been followed up for subclinical carotid atherosclerosis progression for 7 years. Ultrasound markers of subclinical atherosclerosis, which included plaque number (PN) and total plaque height (PH), were measured at baseline and at the 7th-year follow-up survey. Inflammatory biomarkers, including mCRP, hsCRP, inteleukin-6 (IL-6) and von Willebrand factor (VWF) level, were measured at the 7th-year follow-up survey. The median level of mCRP was 5.2 (3.3; 7.1) µg/L, hsCRP 1.05 (0.7; 2.1) mg/L, IL-6 0.0 (0.0; 2.8) pg/mL, VWF 106 (77; 151) IU/dL. In the patients with the mCRP level below median vs. the patients with the median mCRP level or higher, change from baseline in PN was 0.0 (0.0; 1.0) vs. 1.0 (1.0; 2.0) and PH 0.22 (-0.24; 1.91) mm vs. 1.97 (1.14; 3.14) mm, respectively (p < 0.05). The adjusted odds ratio for the formation of new carotid atherosclerotic plaques was 4.7 (95% CI 1.7; 13.2) for the patients with the median mCRP level or higher. The higher mCRP level is associated with the more pronounced increase in PN and PH in patients with normal level of traditional inflammatory biomarkers and initially moderate cardiovascular SCORE risk.
RESUMO
Monomeric C-reactive protein (mCRP), the activated isoform of CRP, induces tissue damage in a range of inflammatory pathologies. Its detection in infarcted human brain tissue and its experimentally proven ability to promote dementia with Alzheimer's disease (AD) traits at 4 weeks after intrahippocampal injection in mice have suggested that it may contribute to the development of AD after cerebrovascular injury. Here, we showed that a single hippocampal administration of mCRP in mice induced memory loss, lasting at least 6 months, along with neurodegenerative changes detected by increased levels of hyperphosphorylated tau protein and a decrease of the neuroplasticity marker Egr1. Furthermore, co-treatment with the monoclonal antibody 8C10 specific for mCRP showed that long-term memory loss and tau pathology were entirely avoided by early blockade of mCRP. Notably, 8C10 mitigated Egr1 decrease in the mouse hippocampus. 8C10 also protected against mCRP-induced inflammatory pathways in a microglial cell line, as shown by the prevention of increased generation of nitric oxide. Additional in vivo and in vitro neuroprotective testing with the anti-inflammatory agent TPPU, an inhibitor of the soluble epoxide hydrolase enzyme, confirmed the predominant involvement of neuroinflammatory processes in the dementia induced by mCRP. Therefore, locally deposited mCRP in the infarcted brain may be a novel biomarker for AD prognosis, and its antibody blockade opens up therapeutic opportunities for reducing post-stroke AD risk.