Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1858(11): 2753-2762, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27425029

RESUMO

We describe a new method to measure the activation energy for unbinding (enthalpy ΔH*u and free energy ΔG*u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a model based on mean first passage time for escape from a potential well. The binding free energy ΔGb of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20±3kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8±0.3kcal/mol for 30% PG, or est. 7.0kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH5.5, but assembles into trimers after associating with membranes. This new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Lipossomas Unilamelares/química , Proteínas do Envelope Viral/química , Animais , Células Cultivadas , Vírus da Dengue/química , Drosophila melanogaster , Concentração de Íons de Hidrogênio , Cinética , Ligação Proteica , Termodinâmica
2.
Microbiol Spectr ; : e0415223, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012110

RESUMO

Staphylococcus aureus is an opportunistic pathogen that has emerged as a major public health threat due to the increased incidence of its drug resistance. S. aureus presents a remarkable capacity to adapt to different niches due to the plasticity of its energy metabolism. In this work, we investigated the energy metabolism of S. aureus, focusing on the alternative NADH:quinone oxidoreductases, NDH-2s. S. aureus presents two genes encoding NDH-2s (NDH-2A and NDH-2B) and lacks genes coding for Complex I, the canonical respiratory NADH:quinone oxidoreductase. This observation makes the action of NDH-2s crucial for the regeneration of NAD+ and, consequently, for the progression of metabolism. Our study involved the comprehensive biochemical characterization of NDH-2B and the exploration of the cellular roles of NDH-2A and NDH-2B, utilizing knockout mutants (Δndh-2a and Δndh-2b). We show that NDH-2B uses NADPH instead of NADH, does not establish a charge-transfer complex in the presence of NADPH, and its reduction by this substrate is the catalytic rate-limiting step. In the case of NDH-2B, the reduction of the flavin is inherently slow, and we suggest the establishment of a charge transfer complex between NADP+ and FADH2, as previously observed for NDH-2A, to slow down quinone reduction and, consequently, prevent the overproduction of reactive oxygen species, which is potentially unnecessary. Furthermore, we observed that the lack of NDH-2A or NDH-2B impacts cell growth, volume, and division differently. The absence of these enzymes results in distinct metabolic phenotypes, emphasizing the unique cellular roles of each NDH-2 in energy metabolism.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen, posing a global challenge in clinical medicine due to the increased incidence of its drug resistance. For this reason, it is essential to explore and understand the mechanisms behind its resistance, as well as the fundamental biological features such as energy metabolism and the respective players that allow S. aureus to live and survive. Despite its prominence as a pathogen, the energy metabolism of S. aureus remains underexplored, with its respiratory enzymes often escaping thorough investigation. S. aureus bioenergetic plasticity is illustrated by its ability to use different respiratory enzymes, two of which are investigated in the present study. Understanding the metabolic adaptation strategies of S. aureus to bioenergetic challenges may pave the way for the design of therapeutic approaches that interfere with the ability of the pathogen to successfully adapt when it invades different niches within its host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA