Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Genes Dev ; 36(19-20): 1046-1061, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357125

RESUMO

The Polycomb repressive complexes PRC1, PRC2, and PR-DUB repress target genes by modifying their chromatin. In Drosophila, PRC1 compacts chromatin and monoubiquitinates histone H2A at lysine 118 (H2Aub1), whereas PR-DUB is a major H2Aub1 deubiquitinase, but how H2Aub1 levels must be balanced for Polycomb repression remains unclear. We show that in early embryos, H2Aub1 is enriched at Polycomb target genes, where it facilitates H3K27me3 deposition by PRC2 to mark genes for repression. During subsequent stages of development, H2Aub1 becomes depleted from these genes and is no longer enriched when Polycomb maintains them repressed. Accordingly, Polycomb targets remain repressed in H2Aub1-deficient animals. In PR-DUB catalytic mutants, high levels of H2Aub1 accumulate at Polycomb target genes, and Polycomb repression breaks down. These high H2Aub1 levels do not diminish Polycomb protein complex binding or H3K27 trimethylation but increase DNA accessibility. We show that H2Aub1 interferes with nucleosome stacking and chromatin fiber folding in vitro. Consistent with this, Polycomb repression defects in PR-DUB mutants are exacerbated by reducing PRC1 chromatin compaction activity, but Polycomb repression is restored if PRC1 E3 ligase activity is removed. PR-DUB therefore acts as a rheostat that removes excessive H2Aub1 that, although deposited by PRC1, antagonizes PRC1-mediated chromatin compaction.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Histonas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Nucleossomos , Drosophila/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
2.
Genes Dev ; 36(19-20): 1043-1045, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460465

RESUMO

The Polycomb system modulates chromatin structure to maintain gene repression during cell differentiation. Polycomb repression involves methylation of histone H3K27 (H3K27me3) by Polycomb repressive complex 2 (PRC2), monoubiquitylation of H2A (H2Aub1) by noncanonical PRC1 (ncPRC1), and chromatin compaction by canonical PRC1 (cPRC1), which is independent of its enzymatic activity. Puzzlingly, Polycomb repression also requires deubiquitylation of H2Aub1 by Polycomb repressive deubiquitinase (PR-DUB). In this issue of Genes & Development, Bonnet and colleagues (pp. 1046-1061) resolve this paradox by showing that high levels of H2Aub1 in Drosophila lacking PR-DUB activity promotes open chromatin and gene expression in spite of normal H3K27me3 levels and PRC binding. Pertinently, gene repression is restored by concomitant loss of PRC1 E3 ubiquitin ligase activity but depends on its chromatin compaction activity. These findings suggest that PR-DUB ensures just-right levels of H2Aub1 to allow chromatin compaction by cPRC1.


Assuntos
Proteínas de Drosophila , Histonas , Animais , Proteínas do Grupo Polycomb/genética , Proteínas de Drosophila/genética , Drosophila/genética , Complexo Repressor Polycomb 1/genética , Cromatina
3.
EMBO J ; 43(7): 1301-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467834

RESUMO

Upon replication fork stalling, the RPA-coated single-stranded DNA (ssDNA) formed behind the fork activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase, concomitantly initiating Rad18-dependent monoubiquitination of PCNA. However, whether crosstalk exists between these two events and the underlying physiological implications of this interplay remain elusive. In this study, we demonstrate that during replication stress, ATR phosphorylates human Rad18 at Ser403, an adjacent residue to a previously unidentified PIP motif (PCNA-interacting peptide) within Rad18. This phosphorylation event disrupts the interaction between Rad18 and PCNA, thereby restricting the extent of Rad18-mediated PCNA monoubiquitination. Consequently, excessive accumulation of the tumor suppressor protein SLX4, now characterized as a novel reader of ubiquitinated PCNA, at stalled forks is prevented, contributing to the prevention of stalled fork collapse. We further establish that ATR preserves telomere stability in alternative lengthening of telomere (ALT) cells by restricting Rad18-mediated PCNA monoubiquitination and excessive SLX4 accumulation at telomeres. These findings shed light on the complex interplay between ATR activation, Rad18-dependent PCNA monoubiquitination, and SLX4-associated stalled fork processing, emphasizing the critical role of ATR in preserving replication fork stability and facilitating telomerase-independent telomere maintenance.


Assuntos
Telomerase , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telomerase/genética , Ubiquitinação , Replicação do DNA , Telômero/genética , Telômero/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA
4.
EMBO J ; 42(7): e112756, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36815434

RESUMO

DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.


Assuntos
Arabidopsis , Quebras de DNA de Cadeia Dupla , Arabidopsis/genética , Arabidopsis/metabolismo , Reparo do DNA , DNA/metabolismo , Histonas/metabolismo
5.
Mol Cell ; 65(2): 247-259, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27986371

RESUMO

Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Ubiquitinação , Linhagem Celular , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fatores de Tempo , Transfecção , Proteases Específicas de Ubiquitina/metabolismo
6.
J Exp Bot ; 75(16): 4822-4836, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717070

RESUMO

A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óvulo Vegetal , Ubiquitinação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Histonas/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética
7.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187895

RESUMO

DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Eritroblástica Aguda/genética , Iniciação da Transcrição Genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIID/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385316

RESUMO

The highly conserved multifunctional polymerase-associated factor 1 (Paf1) complex (PAF1C), composed of five core subunits Paf1, Leo1, Ctr9, Cdc73, and Rtf1, participates in all stages of transcription and is required for the Rad6/Bre1-mediated monoubiquitination of histone H2B (H2Bub). However, the molecular mechanisms underlying the contributions of the PAF1C subunits to H2Bub are not fully understood. Here, we report that Ctr9, acting as a hub, interacts with the carboxyl-terminal acidic tail of Rad6, which is required for PAF1C-induced stimulation of H2Bub. Importantly, we found that the Ras-like domain of Cdc73 has the potential to accelerate ubiquitin discharge from Rad6 and thus facilitates H2Bub, a process that might be conserved from yeast to humans. Moreover, we found that Rtf1 HMD stimulates H2Bub, probably through accelerating ubiquitin discharge from Rad6 alone or in cooperation with Cdc73 and Bre1, and that the Paf1/Leo1 heterodimer in PAF1C specifically recognizes the histone H3 tail of nucleosomal substrates, stimulating H2Bub. Collectively, our biochemical results indicate that intact PAF1C is required to efficiently stimulate Rad6/Bre1-mediated H2Bub.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Escherichia coli , Regulação Fúngica da Expressão Gênica , Histonas , Proteínas Nucleares/genética , Nucleossomos , Subunidades Proteicas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1348-1357, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587758

RESUMO

Autophagy, an efficient and effective approach to clear rapidly damaged organelles, macromolecules, and other harmful cellular components, enables the recycling of nutrient materials and supply of nutrients to maintain cellular homeostasis. Ubiquitination plays an important regulatory role in autophagy. This paper summarizes the most recent progress in ubiquitin modification in various stages of autophagy, including initiation, elongation, and termination. Moreover, this paper shows that ubiquitination is an important way through which selective autophagy achieves substrate specificity. Furthermore, we note the distinction between monoubiquitination and polyubiquitination in the regulation of autophagy. Compared with monoubiquitination, polyubiquitination is a more common strategy to regulate the activity of the autophagy molecular machinery. In addition, the role of ubiquitination in the closure and fusion of autophagosomes warrants further study. This article not only clarifies the regulatory mechanism of autophagy but also contributes to a deeper understanding of the importance of ubiquitination modification.


Assuntos
Autofagossomos , Autofagia , Ubiquitinação , Ubiquitina , Cognição
10.
Mol Microbiol ; 115(2): 332-343, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33010070

RESUMO

The reversible yeast-hyphae transition of the human fungal pathogen Candida albicans is tightly linked to its pathogenicity. In this study, we show that histone H2B mono-ubiquitination (H2Bub) at lysine 123 was maintained at a low level in the yeast state, whereas it increased significantly during yeast-to-hyphae transition and decreased when hyphae converted to yeast. The increased H2Bub level is correlated with activation of the hyphal program. H2B ubiquitination and deubiquitination are dynamically regulated by the E3 ligase Bre1 and the deubiquitinase Ubp8 during the reversible yeast-hyphae transition. The functions of Bre1 and Ubp8 in hypha-specific gene (HSG) regulation appears to be direct because both are recruited to the coding regions of HSGs during hyphal induction. The sequential recruitment of Bre1 and Ubp8 to HSGs coding regions is important for the initiation and maintenance of HSG expression. Additionally, Ubp8 contributes to the pathogenicity of C. albicans during early infection in a mouse model. Our study is the first to link H2B ubiquitination to the morphological plasticity and pathogenicity of the human fungal pathogen C. albicans and shed light on potential antifungal treatments.


Assuntos
Candida albicans/genética , Hifas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/metabolismo , Hifas/genética , Ubiquitinação
11.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328315

RESUMO

Hepatitis C virus (HCV) infection causes liver pathologies, including hepatocellular carcinoma (HCC). Homeobox (HOX) gene products regulate embryonic development and are associated with tumorigenesis, although the regulation of HOX genes by HCV infection has not been clarified in detail. We examined the effect of HCV infection on HOX gene expression. In this study, HCV infection induced more than half of the HOX genes and reduced the level of histone H2A monoubiquitination on lysine 119 (K119) (H2Aub), which represses HOX gene promoter activity. HCV infection also promoted proteasome-dependent degradation of RNF2, which is an E3 ligase mediating H2A monoubiquitination as a component of polycomb repressive complex 1. Since full-genomic replicon cells but not subgenomic replicon cells exhibited reduced RNF2 and H2Aub levels and induction of HOX genes, we focused on the core protein. Expression of the core protein reduced the amounts of RNF2 and H2Aub and induced HOX genes. Treatment with LY-411575, which can reduce HCV core protein expression via signal peptide peptidase (SPP) inhibition without affecting other viral proteins, dose-dependently restored the amounts of RNF2 and H2Aub in HCV-infected cells and impaired the induction of HOX genes and production of viral particles but not viral replication. The chromatin immunoprecipitation assay results also indicated infection- and proteasome-dependent reductions in H2Aub located in HOX gene promoters. These results suggest that HCV infection or core protein induces HOX genes by impairing histone H2A monoubiquitination via a reduction in the RNF2 level.IMPORTANCE Recently sustained virologic response can be achieved by direct-acting antiviral (DAA) therapy in most hepatitis C patients. Unfortunately, DAA therapy does not completely eliminate a risk of hepatocellular carcinoma (HCC). Several epigenetic factors, including histone modifications, are well known to contribute to hepatitis C virus (HCV)-associated HCC. However, the regulation of histone modifications by HCV infection has not been clarified in detail. In this study, our data suggest that HCV infection or HCV core protein expression impairs monoubiquitination of histone H2A K119 in the homeobox (HOX) gene promoter via destabilization of RNF2 and then induces HOX genes. Several lines of evidence suggest that the expression of several HOX genes is dysregulated in certain types of tumors. These findings reveal a novel mechanism of HCV-related histone modification and may provide information about new targets for diagnosis and prevention of HCC occurrence.


Assuntos
Genes Homeobox/genética , Hepacivirus/fisiologia , Histonas/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Código das Histonas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Core Viral/metabolismo
12.
J Exp Bot ; 73(12): 3854-3865, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35348666

RESUMO

Covalent modification of histones is an important tool for gene transcriptional control in eukaryotes, which coordinates growth, development, and adaptation to environmental changes. In recent years, an important role for monoubiquitination of histone 2B (H2B) has emerged in plants, where it is associated with transcriptional activation. In this review, we discuss the dynamics of the H2B monoubiquitination system in plants and its role in regulating developmental processes including flowering, circadian rhythm, photomorphogenesis, and the response to abiotic and biotic stress including drought, salinity, and fungal, bacterial, and viral pathogens. Furthermore, we highlight the crosstalk between H2B monoubiquitination and other histone modifications which fine-tunes transcription and ensures developmental plasticity. Finally, we put into perspective how this versatile regulatory mechanism can be developed as a useful tool for crop improvement.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Secas , Histonas/metabolismo , Estresse Fisiológico , Ubiquitinação
13.
J Exp Bot ; 73(1): 307-323, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436579

RESUMO

One of the major regulatory pathways that permits plants to convert an external stimulus into an internal cellular response within a short period of time is the ubiquitination pathway. In this study, OsATL38 was identified as a low temperature-induced gene that encodes a rice homolog of Arabidopsis Tóxicos en Levadura RING-type E3 ubiquitin (Ub) ligase, which was predominantly localized to the plasma membrane. OsATL38-overexpressing transgenic rice plants exhibited decreased tolerance to cold stress as compared with wild-type rice plants. In contrast, RNAi-mediated OsATL38 knockdown transgenic progeny exhibited markedly increased tolerance to cold stress relative to that of wild-type plants, which indicated a negative role of OsATL38 in response to cold stress. Yeast two-hybrid, in vitro pull-down, and co-immunoprecipitation assays revealed that OsATL38 physically interacted with OsGF14d, a rice 14-3-3 protein. An in vivo target ubiquitination assay indicated that OsGF14d was mono-ubiquitinated by OsATL38. osgf14d knockout mutant plants were more sensitive to cold stress than wild-type rice plants, indicating that OsGF14d is a positive factor in the response to cold stress. These results provide evidence that the RING E3 Ub ligase OsATL38 negatively regulates the cold stress response in rice via mono-ubiquitination of OsGF14d 14-3-3 protein.


Assuntos
Oryza , Proteínas 14-3-3/genética , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Pharmacol Res ; 177: 106093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074526

RESUMO

Monoubiquitination plays a critical role as one of the largest histone post-translational modifications (PTMs). Recent study has revealed that histone H2B monoubiquitination (H2Bub1) at a unique lysine 120 (K120) is widely involved in the development of inflammation progression. However, small-molecules directly targeting H2B to exert anti-inflammation effects via editing monoubiquitination have not been hitherto reported. In this study, we first discover a natural small-molecule epoxymicheliolide (ECL), which directly binds to H2B to inhibit microglia-mediated neuroinflammation in vitro and in vivo. Mechanism study suggests that ECL covalently modifies a previously undisclosed lysine 46 (K46) in H2B, and recruits E3 ubiquitin ligase RNF20 to promote H2Bub1 at K120. ChIP-seq and transcriptomics further reveal that ECL-mediated H2Bub1 markedly disrupts the AP-1 recruitment to proinflammatory gene promoters for microglia inactivation. Collectively, our findings suggests that K46 of H2B serves as a promising pharmacological target to develop small-molecule drugs against microglia-mediated neuroinflammation, and ECL represents a valuable lead compound for neuroinflammation via regulating histone monoubiquitination.


Assuntos
Histonas , Ubiquitina-Proteína Ligases , Histonas/metabolismo , Humanos , Lisina , Doenças Neuroinflamatórias , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Cell Mol Life Sci ; 78(3): 1011-1027, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32458023

RESUMO

Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682605

RESUMO

Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.


Assuntos
Neoplasias , Ubiquitina , Homeostase , Humanos , Lisina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitinação
17.
Crit Rev Biochem Mol Biol ; 54(5): 418-442, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31736364

RESUMO

DNA is constantly exposed to a wide variety of exogenous and endogenous agents, and most DNA lesions inhibit DNA synthesis. To cope with such problems during replication, cells have molecular mechanisms to resume DNA synthesis in the presence of DNA lesions, which are known as DNA damage tolerance (DDT) pathways. The concept of ubiquitination-mediated regulation of DDT pathways in eukaryotes was established via genetic studies in the yeast Saccharomyces cerevisiae, in which two branches of the DDT pathway are regulated via ubiquitination of proliferating cell nuclear antigen (PCNA): translesion DNA synthesis (TLS) and homology-dependent repair (HDR), which are stimulated by mono- and polyubiquitination of PCNA, respectively. Over the subsequent nearly two decades, significant progress has been made in understanding the mechanisms that regulate DDT pathways in other eukaryotes. Importantly, TLS is intrinsically error-prone because of the miscoding nature of most damaged nucleotides and inaccurate replication of undamaged templates by TLS polymerases (pols), whereas HDR is theoretically error-free because the DNA synthesis is thought to be predominantly performed by pol δ, an accurate replicative DNA pol, using the undamaged sister chromatid as its template. Thus, the regulation of the choice between the TLS and HDR pathways is critical to determine the appropriate biological outcomes caused by DNA damage. In this review, we summarize our current understanding of the species-specific regulatory mechanisms of PCNA ubiquitination and how cells choose between TLS and HDR. We then provide a hypothetical model for the spatiotemporal regulation of DDT pathways in human cells.


Assuntos
Dano ao DNA , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação , Animais , DNA/biossíntese , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Transdução de Sinais , Análise Espaço-Temporal , Ubiquitina/metabolismo
18.
New Phytol ; 230(3): 1142-1155, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33507543

RESUMO

Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.


Assuntos
Glomeromycota , Micorrizas , Fungos , Histonas , Raízes de Plantas , Simbiose
19.
EMBO Rep ; 20(12): e48296, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31576653

RESUMO

Eggless/SETDB1 (Egg), the only essential histone methyltransferase (HMT) in Drosophila, plays a role in gene repression, including piRNA-mediated transposon silencing in the ovaries. Previous studies suggested that Egg is post-translationally modified and showed that Windei (Wde) regulates Egg nuclear localization through protein-protein interaction. Monoubiquitination of mammalian SETDB1 is necessary for the HMT activity. Here, using cultured ovarian somatic cells, we show that Egg is monoubiquitinated and phosphorylated but that only monoubiquitination is required for piRNA-mediated transposon repression. Egg monoubiquitination occurs in the nucleus. Egg has its own nuclear localization signal, and the nuclear import of Egg is Wde-independent. Wde recruits Egg to the chromatin at target gene silencing loci, but their interaction is monoubiquitin-independent. The abundance of nuclear Egg is governed by that of nuclear Wde. These results illuminate essential roles of nuclear monoubiquitination of Egg and the role of Wde in piRNA-mediated transposon repression.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Núcleo Celular/genética , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/química , Feminino , Inativação Gênica , Histona-Lisina N-Metiltransferase/química , Técnicas In Vitro , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Ovário/citologia , Ovário/metabolismo , Domínios Proteicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitinação
20.
EMBO Rep ; 20(7): e47563, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267712

RESUMO

Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is an epigenetic mark generally associated with transcriptional activation, yet the global functions of H2Bub1 remain poorly understood. Ferroptosis is a form of non-apoptotic cell death characterized by the iron-dependent overproduction of lipid hydroperoxides, which can be inhibited by the antioxidant activity of the solute carrier family member 11 (SLC7A11/xCT), a component of the cystine/glutamate antiporter. Whether nuclear events participate in the regulation of ferroptosis is largely unknown. Here, we show that the levels of H2Bub1 are decreased during erastin-induced ferroptosis and that loss of H2Bub1 increases the cellular sensitivity to ferroptosis. H2Bub1 epigenetically activates the expression of SLC7A11. Additionally, we show that the tumor suppressor p53 negatively regulates H2Bub1 levels independently of p53's transcription factor activity by promoting the nuclear translocation of the deubiquitinase USP7. Moreover, our studies reveal that p53 decreases H2Bub1 occupancy on the SLC7A11 gene regulatory region and represses the expression of SLC7A11 during erastin treatment. These data not only suggest a noncanonical role of p53 in chromatin regulation but also link p53 to ferroptosis via an H2Bub1-mediated epigenetic pathway. Overall, our work uncovers a previously unappreciated epigenetic mechanism for the regulation of ferroptosis.


Assuntos
Epigênese Genética , Ferroptose , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA