Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128148

RESUMO

The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.


Assuntos
Aedes , Mosquitos Vetores , Animais , Feminino , Masculino , Filogenia , Mosquitos Vetores/genética , Aedes/genética , Aedes/metabolismo , Splicing de RNA
2.
FASEB J ; 38(15): e23864, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109513

RESUMO

Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.


Assuntos
Aedes , Receptores Acoplados a Proteínas G , Animais , Aedes/metabolismo , Aedes/genética , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Cricetulus , Comportamento Alimentar/fisiologia , Mosquitos Vetores
3.
Malar J ; 23(1): 247, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154186

RESUMO

The Asia-Pacific region has had decades of progress in reducing malaria cases and deaths. The region is now accelerating its efforts towards malaria elimination by 2030 using a science-based approach by applying evidence-based best practices alongside existing tools. However, there are concerns of knowledge gaps and external factors challenging this goal. The COVID-19 pandemic served as reminder of the need for a holistic approach. This report summarizes the outcomes of the discussions from the "Asia Pacific Conference on Mosquito and Vector Control" held in Chiang Mai, Thailand from 27 to 30 November, 2023. The conference aims to provide insights into recent research, cutting-edge tools, and the strength of the Asia-Pacific regional mosquito and vector control capacity post-COVID-19 pandemic era. The conference featured discussions on mosquito surveillance, monitoring and control; enabling the resolution of local problems with local expertise and forging new partnerships; and exploring recent research advancements in vector control strategies. More than 500 experts from 55 countries attended.


Assuntos
Controle de Mosquitos , Mosquitos Vetores , Controle de Mosquitos/métodos , Animais , Humanos , Ásia , Malária/prevenção & controle , COVID-19/prevenção & controle , COVID-19/epidemiologia , Congressos como Assunto
4.
Malar J ; 23(1): 8, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178145

RESUMO

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Assuntos
Malária , Controle de Mosquitos , Animais , Estados Unidos , Malária/epidemiologia , África Subsaariana , Ecologia , Vetores de Doenças , Mosquitos Vetores
5.
Bioorg Chem ; 150: 107591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964147

RESUMO

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.


Assuntos
Culex , Inseticidas , Larva , Simulação de Acoplamento Molecular , Quinolinas , Animais , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/síntese química , Larva/efeitos dos fármacos , Relação Estrutura-Atividade , Quinolinas/farmacologia , Quinolinas/química , Quinolinas/síntese química , Estrutura Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Acetilcolinesterase/metabolismo
6.
Arch Insect Biochem Physiol ; 116(4): e22142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166355

RESUMO

The invasive species Aedes albopictus is a major vector of several arboviruses. The global spread of this species seriously threatens human health. Insecticide resistance is an increasing problem worldwide that limits the efficacy of mosquito control. As the major structural component of cuticles, chitin is indispensable to insects. Chitin synthase (CHS) is the enzyme that catalyzes the biosynthesis of chitin at the final step. In this study, two CHS genes of Aedes albopictus (AaCHS1 and AaCHS2) were identified and their basic characteristics were evaluated via bioinformatics analysis. The highest abundance of AaCHS1 transcripts was detected in pupae, whereas that of AaCHS2 transcripts was detected in females; the highest expression levels of AaCHS1 and AaCHS2 were found in the epidermis and the midgut of pupae, respectively. The survival and emergence rates of pupae were significantly reduced after the injection of double-stranded RNA of AaCHS1 or AaCHS2, indicating that both AaCHS1 and AaCHS2 play crucial roles in the pupal development. In addition, the chitin content of pupae was obviously decreased after the suppression of AaCHS1 expression by RNA interference (RNAi) treatment. This influence of the RNAi treatment was further supported by the reduced chitin thickness and weakened chitin fluorescence signal in the new cuticle. The midgut of pupae presented a reduced intensity of the chitin fluorescence signal along with RNAi treatment specific to AaCHS2 expression. The results of this study indicate that CHS genes may be suitable as molecular targets used for controlling mosquitoes.


Assuntos
Aedes , Quitina Sintase , Quitina , Pupa , Animais , Aedes/genética , Aedes/enzimologia , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Interferência de RNA , Filogenia
7.
Malar J ; 22(1): 23, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670398

RESUMO

The use of Unmanned Aerial Vehicles (UAVs) has expanded rapidly in ecological conservation and agriculture, with a growing literature describing their potential applications in global health efforts including vector control. Vector-borne diseases carry severe public health and economic impacts to over half of the global population yet conventional approaches to the surveillance and treatment of vector habitats is typically laborious and slow. The high mobility of UAVs allows them to reach remote areas that might otherwise be inaccessible to ground-based teams. Given the rapidly expanding examples of these tools in vector control programmes, there is a need to establish the current knowledge base of applications for UAVs in this context and assess the strengths and challenges compared to conventional methodologies. This review aims to summarize the currently available knowledge on the capabilities of UAVs in both malaria control and in vector control more broadly in cases where the technology could be readily adapted to malaria vectors. This review will cover the current use of UAVs in vector habitat surveillance and deployment of control payloads, in comparison with their existing conventional approaches. Finally, this review will highlight the logistical and regulatory challenges in scaling up the use of UAVs in malaria control programmes and highlight potential future developments.


Assuntos
Malária , Dispositivos Aéreos não Tripulados , Humanos , Malária/prevenção & controle , Agricultura , Ecossistema , Tecnologia
8.
Mol Divers ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358753

RESUMO

Throughout history, vector-borne diseases have consistently posed significant challenges to human health. Among the strategies for vector control, chemical insecticides have seen widespread use since their inception. Nevertheless, their effectiveness is continually undermined by the steady growth of insecticide resistance within these vector populations. As such, the demand for more robust, efficient, and cost-effective natural insecticides has become increasingly pressing. One promising avenue of research focuses on chitin, a crucial structural component of mosquitoes' exoskeletons and other insects. Chitin not only provides protection and rigidity but also lends flexibility to the insect body. It undergoes substantial transformations during insect molting, a process known as ecdysis. Crucially, the production of chitin is facilitated by an enzyme known as chitin synthase, making it an attractive target for potential novel insecticides. Our recent study delved into the impacts of curcumin, a natural derivative of turmeric, on chitin synthesis and larval development in Aedes aegypti, a mosquito species known to transmit dengue and yellow fever. Our findings demonstrate that even sub-lethal amounts of curcumin can significantly reduce overall chitin content and disrupt the cuticle development in the 4th instar larvae of Aedes aegypti. Further to this, we utilized computational analyses to investigate how curcumin interacts with chitin synthase. Techniques such as molecular docking, pharmacophore feature mapping, and molecular dynamics (MD) simulations helped to illustrate that curcumin binds to the same site as polyoxin D, a recognized inhibitor of chitin synthase. These findings point to curcumin's potential as a natural, bioactive larvicide that targets chitin synthase in mosquitoes and potentially other insects.

9.
BMC Public Health ; 23(1): 1730, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670248

RESUMO

BACKGROUND: Aedes aegypti, the vector of arboviral diseases such as dengue and Zika virus infections, is difficult to control. Effective interventions must be practicable, comprehensive, and sustained. There is evidence that community participation can enhance mosquito control. Therefore, countries are encouraged to develop and integrate community-based approaches to mosquito control to mitigate Aedes-borne infectious diseases (ABIDs). Health professionals must understand the contexts motivating individuals' behaviour to improve community participation and promote behavioural change. Therefore, this study aimed to determine how contexts shaped individuals' protective behaviours related to ABIDs in Curaçao. METHODS: From April 2019 to September 2020, a multi-method qualitative study applying seven (n = 54) focus group discussions and twenty-five in-depth interviews with locals was performed in CuraÒ«ao. The study was designed based on the Health Belief Model (HBM). Two cycles of inductive and deductive coding were employed, and Nvivo software was used to manage and analyse the data. RESULTS: In this study, low media coverage (external cue to action) and limited experience with the symptoms of ABIDs (internal cue to action) were linked with a low perceived susceptibility and severity of ABIDs (low perceived threat). The low perceived threat was linked with reduced health-seeking behaviour (HSB) to prevent and control ABIDs. We also found that the perceived barriers outweigh the perceived benefits of ABID prevention and control interventions, obstructing HSB. On the one hand, insufficient knowledge reduced self-efficacy but contrary to expected, having good knowledge did not promote HSB. Lastly, we found that our participants believe that they are responsible for preventing ABIDs (internal locus of control) but at the same time indicated that their success depends on the efforts of the community and the health system (external locus of control). CONCLUSIONS: This study used the HBM to explain individual changes in HSB concerning ABIDs prevention and control in Curaçao. We can conclude that the perceived threat (perceived susceptibility and severity) and perceived barriers played an essential role in changing HSB. Health professionals must consider these two concepts' implications when designing a bottom-up approach for ABIDs control; otherwise, community participation will remain minimal.


Assuntos
Aedes , Doenças Transmissíveis , Infecção por Zika virus , Zika virus , Humanos , Animais , Curaçao , Mosquitos Vetores , Comportamentos Relacionados com a Saúde
10.
Ecotoxicol Environ Saf ; 250: 114503, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610297

RESUMO

Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration - an effect mainly attributed to an earlier (∼10 days) and reduced (∼26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (∼21%) during Bti application (April - May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and top-down effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquatic-terrestrial meta-ecosystems.


Assuntos
Bacillus thuringiensis , Chironomidae , Humanos , Animais , Ecossistema , Cadeia Alimentar , Insetos
11.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721493

RESUMO

Improvements are needed in mosquito mass-rearing to effectively implement the sterile insect technique (SIT). However, managing this technique is challenging and resource intensive. SIT relies on mass rearing, sterilization, and release of adult males to reduce field populations. Maintaining an acceptable level of female presence, who can transmit viruses through biting, is crucial. Females are also essential for facility sustainability. Sex sorting plays a vital role in the production process, and our current mechanical sorting approach aims to obtain a high number of adult males with minimal female contamination within 24 h of pupation. Utilizing protandry helps control female contamination. While the 24-h sorting period achieves desired contamination levels, it may not yield enough females to sustain breeding lines, leading to increased labor costs that impact project sustainability. By delaying the sorting procedure to 48 h, we obtained sufficient females to sustain breeding lines, achieving a balance between male production and female contamination using the automatic version of the Fay-Morlan device as the sorting tool.


Assuntos
Culicidae , Feminino , Masculino , Animais , Insetos
12.
J Vector Borne Dis ; 60(1): 79-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026223

RESUMO

BACKGROUND & OBJECTIVES: Nanotechnology, an emerging field, has acquired considerable attention for the control of vectors. The present study aimed to synthesize, characterize copper sulfide- and eucalyptus oil-based hybrid nanoemulsions and investigate their larvicidal potential against Aedes aegypti by studying larvicidal bioassay, morphological aberrations, histopathological alterations, biochemical analysis and evaluation of risk assessment in non-target organisms. METHODS: Hybrid nanoemulsions were prepared by mixing aqueous copper sulfide nanoparticles (CuSNPs) with non-polar eucalyptus oil in five ratios (1:1, 1:2, 1:3, 1:4 and 1:5) by sonication, screened and characterized using Transmission electron microscopy (TEM). Larvicidal activity was recorded and toxicity values were calculated by log-probit method. Morphological, histological and biochemical changes were examined in Aedes aegypti larvae after treatment. Nanohybrids were also tested under simulated conditions and against non-target organism. RESULTS: The nanohybrid ratio of 1:5 was found to be stable after thermodynamic stability tests. TEM studies revealed average size of 90±7.90 nm with globular shape. LC50 and LC90 toxicity values of prepared CuSNPs were calculated out to be 5.00 and 5.81ppm after 24 hours treatment. Effective concentration of prepared nanohybrid (6.5ppm) tested under simulated conditions showed maximum larvicidal mortality after 48 hours of exposure. No toxicity towards the Mesocyclops spp. was observed after treatment of these nanohybrids even up to 21 days. INTERPRETATION & CONCLUSION: Copper sulfide based hybrid nanoemulsions were found to show efficient larvicidal property which can be used for the formulation of ecofriendly bio-larvicide against Aedes aegypti.


Assuntos
Aedes , Inseticidas , Animais , Óleo de Eucalipto/análise , Óleo de Eucalipto/farmacologia , Cobre/farmacologia , Cobre/análise , Inseticidas/farmacologia , Inseticidas/química , Mosquitos Vetores , Extratos Vegetais/farmacologia , Folhas de Planta/química , Larva
13.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175177

RESUMO

The chemical investigation of branches of Cinnamomum camphora chvar. Borneol guided by mosquito larvicidal activity led to the isolation of fourteen known lignans (1-14). Their structures were elucidated unambiguously based on comprehensive spectroscopic analysis and comparison with the literature data. This is the first report of these compounds being isolated from branches of Cinnamomum camphora chvar. Borneol. Compounds 3-5 and 8-14 were isolated from this plant for the first time. All compounds isolated were subjected to anti-inflammatory, mosquito larvicidal activity and cytotoxic activity evaluation. Compounds (1-14) showed significant mosquito larvicidal activity against Culex pipiens quinquefasciatus with lethal mortality in 50% (LC50), with values ranging from 0.009 to 0.24 µg/mL. Among them, furofuran lignans(1-8) exhibited potent mosquito larvicidal activity against Cx. p. quinquefasciatus, with LC50 values of 0.009-0.021 µg/mL. From the perspective of a structure-activity relationship, compounds with a dioxolane group showed high mosquito larvicidal activity and have potential to be developed into a mosquitocide.


Assuntos
Aedes , Cinnamomum camphora , Culex , Culicidae , Inseticidas , Lignanas , Animais , Lignanas/farmacologia , Lignanas/análise , Inseticidas/química , Larva , Extratos Vegetais/química , Folhas de Planta/química
14.
Bull Environ Contam Toxicol ; 110(4): 70, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959482

RESUMO

The biocide Bacillus thuringiensis var. israelensis (Bti) is applied to wetlands to control nuisance by mosquitoes. Amphibians inhabiting these wetlands can be exposed to Bti multiple times, potentially inducing oxidative stress in developing tadpoles. For biochemical stress responses, ambient water temperature plays a key role. Therefore, we exposed tadpoles of the European common frog (Rana temporaria) three times to field-relevant doses of Bti in outdoor floodplain pond mesocosms (FPM) under natural environmental conditions. We sampled tadpoles after each Bti application over the course of a 51-day experiment (April to June 2021) and investigated the activity of the glutathione-S-transferase (GST) and protein carbonyl content as a measure for detoxification activity and oxidative damage. GST activity increased over the course of the experiment likely due to a general increase of water temperature. We did not observe an effect of Bti on either of the investigated biomarkers under natural ambient temperatures. However, Bti-induced effects may be concealed by the generally low water temperatures in our FPMs, particularly at the first application in April, when we expected the highest effect on the most sensitive early stage tadpoles. In light of the global climate change, temperature-related effects of pesticides and biocides on tadpoles should be carefully monitored - in particular since they are known as one of the factors driving the worldwide decline of amphibian populations.


Assuntos
Bacillus thuringiensis , Desinfetantes , Animais , Rana temporaria , Controle de Mosquitos , Larva , Desinfetantes/farmacologia , Lagoas , Carbonilação Proteica , Glutationa Transferase , Água
15.
Econ Bot ; : 1-19, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37359047

RESUMO

Tropical countries face considerable economic losses due to mosquito-borne diseases which can be effectively combatted using plant-based mosquito repellents. Therefore, using a questionnaire survey, we selected the 25 top-ranked common but underutilized aromatic plants with mosquito repellent ability in Sri Lanka to investigate the rural sector's willingness to cultivate and supply them. Cinnamomum verum, Citrus aurantiifolia, Citrus sinensis, Citrus reticulata, Aegle marmelos, and Ocimum tenuiflorum were the common species thus identified. The willingness to cultivate and supply aromatic plants with mosquito repellent ability varied between 88% and 60%. The Chi-squared test indicated a significant association between gender and willingness to cultivate and supply these plants. Men had a higher willingness (82%). Persons formally educated up to elementary school level had the highest willingness (85%). The willingness from households with many non-income-generating members was 100%. The random forest model developed in this study identifies farmers' willingness to cultivate and supply aromatic plants with mosquito repellent properties. It was trained using an upsampling strategy. Our findings aid in understanding the scenarios involved with introducing, cultivating, and supplying aromatic plants.

16.
Emerg Infect Dis ; 28(2): 425-428, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076377

RESUMO

Mosquito control is essential to reduce vectorborne disease risk. We surveyed residents in Harris, Tarrant, and Hidalgo Counties, Texas, USA, to estimate willingness-to-pay for mosquito control and acceptance of control methods. Results show an unmet demand for expanded mosquito control that could be funded through local taxes or fees.


Assuntos
Controle de Mosquitos , Doenças Transmitidas por Vetores , Humanos , Mosquitos Vetores , Texas
17.
Transgenic Res ; 31(4-5): 489-504, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798930

RESUMO

Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Ecossistema , Humanos , Larva/genética , Malária/prevenção & controle , Controle de Mosquitos/métodos
18.
Trop Med Int Health ; 27(3): 300-309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118778

RESUMO

OBJECTIVE: To investigate the presence and abundance of mosquito species in containers found in different types of cemeteries in Puerto Rico to assess their importance and make control recommendations. METHODS: We conducted surveys of containers with water in 16 cemeteries in southeastern Puerto Rico to detect the presence of larvae and pupae of Aedes aegypti and other mosquitoes; to identify the most common and productive containers and to study their variation in relation to the type of cemetery. RESULTS: The most common containers with water were flowerpots, followed in abundance by a variety of discarded containers and open tombs. We found a positive relationship between density of containers with water and rainfall. There was a rich community of mosquito species developing in containers of the inspected cemeteries: nine mosquito species belonging to four genera with Ae. aegypti and Ae. mediovittatus being the most frequent and abundant. We sampled 13 cement-type cemeteries, 2 mixed and only 1 lawn cemetery, consequently, we could not draw any conclusion regarding container productivity and cemetery type. CONCLUSIONS: Surveyed cemeteries were important sources of Ae. aegypti and other mosquitoes in flowerpots, discarded containers and open tombs. We recommend conducting further studies to establish how frequently inspections should occur; and mosquito control by emptying aquatic habitats and larviciding to reduce mosquito productivity and protect workers and visitors from mosquito bites and possible transmission of arboviruses.


Assuntos
Aedes , Animais , Cemitérios , Ecossistema , Humanos , Larva , Controle de Mosquitos , Mosquitos Vetores , Porto Rico , Pupa , Água
19.
J Math Biol ; 84(6): 48, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508555

RESUMO

Throughout the vector-borne disease modeling literature, there exist two general frameworks for incorporating vector management strategies (e.g. area-wide adulticide spraying and larval source reduction campaigns) into vector population models, namely, the "implicit" and "explicit" control frameworks. The more simplistic "implicit" framework facilitates derivation of mathematically rigorous results on disease suppression and optimal control, but the biological connection of these results to real-world "explicit" control actions that could guide specific management actions is vague at best. Here, we formally define a biological and mathematical relationship between implicit and explicit control, and we provide mathematical expressions relating the strength of implicit control to management-relevant properties of explicit control for four common intervention strategies. These expressions allow the optimal control and basic reproduction number analyses typically utilized in implicit control modeling to be interpreted directly in terms of real-world actions and real-world monetary costs. Our methods reveal that only certain sub-classes of explicit control protocols are able to be represented as implicit controls, and that implicit control is a meaningful approximation of explicit control only when resonance-like synergistic effects between multiple explicit controls have negligible effects on population reduction. When non-negligible synergy exists, implicit control results, despite their mathematical tidiness, fail to provide accurate predictions regarding vector control and disease spread. Collectively, these elements build an effective bridge between analytically interesting and mathematically tractable implicit control and the challenging, action-oriented explicit control.


Assuntos
Vetores de Doenças , Doenças Transmitidas por Vetores , Animais , Número Básico de Reprodução , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle
20.
Ecotoxicol Environ Saf ; 243: 114004, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007317

RESUMO

Bacillus thuringiensis subsp. israelensis (Bti) is the main larvicide used to control mosquitoes worldwide. Although there is accumulating evidence of Bti having environmental effects on non-target fauna, relatively few field studies have documented the fate of Bti spores in the environment. Spore density was quantified over a 6-yr period (2012-2017) in Mediterranean marshes sprayed with Vectobac 12AS (32 ITU/ha) since 2006 to reduce the nuisance caused by Aedes caspius. Bti spores were naturally found in all habitat types. Spore density expressed as colony-forming units per gram of soil (CFU g-1) increased significantly at treated sites by a factor of 22 to 500 times relative to control sites, with mean values of 7730 CFU g-1 in halophilous scrubs, 38,000 in reed beds, 49,000 in bulrush beds and 50 000 in rush beds. Spore density varied little in the first months after the spraying season (April-October), but increased sharply in spring, just before the annual launch of mosquito control. Considering that Bti is an insect pathogen that cannot proliferate without a suitable insect host, this unexpected recrudescence in spring could be related to the warming of water that triggers activity and development of benthic organisms such as chironomids, which may contribute to Bti proliferation by ingesting accumulated spores at the surface of sediments. While spore density tends to decrease over time, presumably during the summer period as a result of increased UV exposure, three to four years were necessary for spore density to return to normal levels after mosquito-control interruption. This study is important because it demonstrates that environmental effects of mosquito-control using Bti can far exceed the short period of Bti efficacy against lentic mosquitoes. Considering that Bti is a microbial agent, these long-term effects should be addressed at multiple levels of ecosystem organization from a one-health perspective.


Assuntos
Aedes , Bacillus thuringiensis , Animais , Ecossistema , Larva , Controle de Mosquitos , Controle Biológico de Vetores , Esporos Bacterianos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA