RESUMO
Apical potassium channels are crucial for thick ascending limb (TAL) of Henle's loop transport function. The ROMK (KNCJ1) gene encodes a 30-pS K channel whose loss of function causes the reduced NaCl reabsorption in the TAL associated with Type 2 Bartter's syndrome. In contrast, the molecular basis of a functionally ROMK-related 70-pS K channel is still unclear. The aim of this study was to highlight new specific channel properties that may give insights on its molecular identity. Using the patch-clamp technique on the apical membrane of mouse split-open TAL tubules, we observed that 70-pS K channel activity, but not ROMK channel activity, increases with the internal Na+ and Cl- concentrations, with relative 50 % effective concentrations (EC50) and Hill coefficients (nH) of 40.6 mM (SD 1.65) and 2.4 (SD 0.28) for Na+, and of 29.3 mM (SD 2.35) and 2.2 (SD 0.39) for Cl-. Conversely, 70-pS K channel activity was inhibited by internal K+ with a relative EC50 of 64 mM (SD 13.5) and a nH of 3.5 (SD 2.3), and by internal NH4+ and Ca2+. The reevaluation of channel conductive properties revealed an actual inward conductance of ~ 170 pS, with multiple subconductance levels and an inward rectification, and a substantial permeability to NH4+ ( = 0.2). We conclude that the apical 70-pS K channel in TAL cells is a large-conductance Na+- and Cl--activated potassium channel functionally resembling a KNa1.1 channel and propose that ROMK determines its functional expression possibly at the level of channel protein synthesis or trafficking.
RESUMO
PURPOSE: To develop and evaluate a reliable non-invasive means for assessing the severity and progression of fibrosis in kidneys. We used spin-lock MR imaging with different locking fields to detect and characterize progressive renal fibrosis in an hHB-EGFTg/Tg mouse model. METHODS: Male hHB-EGFTg/Tg mice, a well-established model of progressive fibrosis, and age-matched normal wild type (WT) mice, were imaged at 7T at ages 5-7, 11-13, and 30-40 weeks. Spin-lock relaxation rates R1ρ were measured at different locking fields (frequencies) and the resultant dispersion curves were fit to a model of exchanging water pools. The obtained MRI parameters were evaluated as potential indicators of tubulointerstitial fibrosis in kidney. Histological examinations of renal fibrosis were also carried out post-mortem after MRI. RESULTS: Histology detected extensive fibrosis in the hHB-EGFTg/Tg mice, in which collagen deposition and reductions in capillary density were observed in the fibrotic regions of kidneys. R2 and R1ρ values at different spin-lock powers clearly dropped in the fibrotic region as fibrosis progressed. There was less variation in the asymptotic locking field relaxation rate R1ρ∞ between the groups. The exchange parameter Sρ and the inflection frequency ωinfl changed by larger factors. CONCLUSION: Both Sρ and ωinfl depend primarily on the average exchange rate between water and other chemically shifted resonances such as hydroxyls and amides. Spin-lock relaxation rate dispersion, rather than single measurements of relaxation rates, provides more comprehensive and specific information on spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney.
Assuntos
Rim , Imageamento por Ressonância Magnética , Amidas , Animais , Modelos Animais de Doenças , Fibrose , Rim/diagnóstico por imagem , Masculino , CamundongosRESUMO
Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice (n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 (n = 31) and Swiss mice (n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.
Assuntos
Nefrite Intersticial , Infecções por Parvoviridae , Parvovirinae , Doenças dos Roedores , Animais , Rim , Camundongos , Camundongos Endogâmicos , Nefrite Intersticial/veterinária , Infecções por Parvoviridae/veterinária , Parvovirinae/patogenicidadeRESUMO
Renal Ca2+ reabsorption is essential for maintaining systemic Ca2+ homeostasis and is tightly regulated through the parathyroid hormone (PTH)/PTHrP receptor (PTH1R) signaling pathway. We investigated the role of PTH1R in the kidney by generating a mouse model with targeted deletion of PTH1R in the thick ascending limb of Henle (TAL) and in distal convoluted tubules (DCTs): Ksp-cre;Pth1rfl/fl Mutant mice exhibited hypercalciuria and had lower serum calcium and markedly increased serum PTH levels. Unexpectedly, proteins involved in transcellular Ca2+ reabsorption in DCTs were not decreased. However, claudin14 (Cldn14), an inhibitory factor of the paracellular Ca2+ transport in the TAL, was significantly increased. Analyses by flow cytometry as well as the use of Cldn14-lacZ knock-in reporter mice confirmed increased Cldn14 expression and promoter activity in the TAL of Ksp-cre;Pth1rfl/fl mice. Moreover, PTH treatment of HEK293 cells stably transfected with CLDN14-GFP, together with PTH1R, induced cytosolic translocation of CLDN14 from the tight junction. Furthermore, mice with high serum PTH levels, regardless of high or low serum calcium, demonstrated that PTH/PTH1R signaling exerts a suppressive effect on Cldn14. We therefore conclude that PTH1R signaling directly and indirectly regulates the paracellular Ca2+ transport pathway by modulating Cldn14 expression in the TAL. Finally, systemic deletion of Cldn14 completely rescued the hypercalciuric and lower serum calcium phenotype in Ksp-cre;Pth1rfl/fl mice, emphasizing the importance of PTH in inhibiting Cldn14. Consequently, suppressing CLDN14 could provide a potential treatment to correct urinary Ca2+ loss, particularly in patients with hypoparathyroidism.
Assuntos
Cálcio/metabolismo , Claudinas/fisiologia , Extremidades/fisiologia , Regulação da Expressão Gênica , Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Junções Íntimas/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Transdução de SinaisRESUMO
storage is the most prevalent method for graft preservation in kidney transplantation (KTX). The protective effects of various preservation solutions have been studied extensively in both clinical trials and experimental animal models. However, a paucity of studies have examined the effect of different preservation solutions on graft function in mouse KTX; in addition, the tolerance of the transplanted grafts to further insult has not been evaluated, which was the objective of the present study. We performed mouse KTX in three groups, with the donor kidneys preserved in different solutions for 60 min: saline, mouse serum, and University of Wisconsin (UW) solution. The graft functions were assessed by kidney injury markers and glomerular filtration rate (GFR). The grafts that were preserved in UW solution exhibited better functions, reflected by 50 and 70% lower plasma creatinine levels as well as 30 and 55% higher plasma creatinine levels in GFR than serum and saline groups, respectively, during the first week after transplants. To examine the graft function in response to additional insult, we induced ischemia-reperfusion injury (IRI) by clamping the renal pedicle for 18 min at 4 wk after KTX. We found that the grafts preserved in UW solution exhibited ~30 and 20% less injury assessed by kidney injury markers and histology than in other two preservation solutions. Taken together, our results demonstrated that UW solution exhibited a better protective effect in transplanted renal grafts in mice. UW solution is recommended for use in mouse KTX for reducing confounding factors such as IRI during surgery.
Assuntos
Transplante de Rim , Rim/efeitos dos fármacos , Rim/cirurgia , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Solução Salina/farmacologia , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Biomarcadores/sangue , Creatinina/sangue , Citoproteção , Taxa de Filtração Glomerular/efeitos dos fármacos , Glutationa/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/sangue , Insulina/farmacologia , Rim/metabolismo , Rim/fisiopatologia , Transplante de Rim/efeitos adversos , Lipocalina-2/sangue , Masculino , Camundongos Endogâmicos C57BL , Preservação de Órgãos/efeitos adversos , Rafinose/farmacologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/fisiopatologia , Fatores de TempoRESUMO
Kidney transplantation (KTX) is a life-saving procedure for patients with end-stage renal disease. Expression levels of many genes in the kidney vary between males and females, which may play an essential role in the sex differences in graft function. However, whether these differences are affected after cross-sex-KTX is unknown. In the present study, we assessed postoperative changes in genotype, function, and inflammatory responses of the grafts in same-sex- and cross-sex-KTX. Single kidney transplants were performed between same and different sex C57BL/6 mice paired into four combination groups: female donor/female recipient (F/F); male donor/male recipient (M/M); female donor/male recipient (F/M); and male donor/female recipient (M/F). The remnant native kidney was removed 4 days posttransplant. Expression levels of genes related to the contractility of the afferent arteriole and tubular sodium reabsorption were assessed. Same-sex-KTX did not significantly alter the magnitude or sex difference pattern of gene expression in male or female grafts. Cross-sex-KTX showed an attenuated sex difference in gene expressions. The measurements of endothelin 1, endothelin ETA receptor, Na+-K--2Cl cotransporter 2 (NKCC2), and epithelial Na+ channels (ENaC) subunits exhibited decreases in M/F compared with M/M and increases in F/M compared with F/F. There were no significant differences in hemodynamics or sodium excretion in response to acute volume expansion for any sex combinations. Cross-sex-KTX stimulated more robust inflammatory responses than same-sex-KTX. IL-6 and KC mRNA levels elevated 5- to 20-fold in cross-sex-KTX compared with same-sex-KTX. In conclusion, cross-sex-KTX alters gene expression levels and induces inflammatory responses, which might play an important role in long-term graft function.
Assuntos
Regulação da Expressão Gênica , Transplante de Rim/efeitos adversos , Rim/metabolismo , Rim/cirurgia , Nefrite/genética , Animais , Endotelina-1/genética , Endotelina-1/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Interação Gene-Ambiente , Genótipo , Hemodinâmica , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Nefrite/metabolismo , Nefrite/patologia , Nefrite/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Circulação Renal , Eliminação Renal , Fatores Sexuais , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de TempoRESUMO
The aim was to quantify the glomerular capillary surface area, the segmental tubular radius, length, and area of single nephrons in mouse and rat kidneys. Multiple 2.5-µm-thick serial Epon sections were obtained from three mouse and three rat kidneys for three-dimensional reconstruction of the nephron tubules. Micrographs were aligned for each kidney, and 359 nephrons were traced and their segments localized. Thirty mouse and thirty rat nephrons were selected for further investigation. The luminal radius of each segment was determined by two methods. The luminal surface area was estimated from the radius and length of each segment. High-resolution micrographs were recorded for five rat glomeruli, and the capillary surface area determined. The capillary volume and surface area were corrected for glomerular shrinkage. A positive correlation was found between glomerular capillary area and proximal tubule area. The thickest part of the nephron, i.e., the proximal tubule, was followed by the thinnest part of the nephron, i.e., the descending thin limb, and the diameters of the seven identified nephron segments share the same rank in the two species. The radius and length measurements from mouse and rat nephrons generally share the same pattern; rat tubular radius-to-mouse tubular radius ratio ≈ 1.47, and rat tubular length-to-mouse tubular length ratio ≈ 2.29, suggesting relatively longer tubules in the rat. The detailed tables of mouse and rat glomerular capillary area and segmental radius, length, and area values may be used to enhance understanding of the associated physiology, including existing steady-state models of the urine-concentrating mechanism.
Assuntos
Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Néfrons/patologia , Animais , Capacidade de Concentração Renal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia , Ratos Wistar , Tomografia Computadorizada por Raios X/métodosRESUMO
Type and quality of sample preparation have significant impact on imaging mass spectrometry results. Though imaging of fresh-frozen tissues is considered to give the best results, they are incompatible with clinical practice, since routine diagnostics is most frequently performed using formalin-fixed tissues, and formalin-fixed paraffin-embedded material is a gold standard in histopathology. We aimed to assess utility of formalin-fixed tissue specimen processed without paraffin embedding (i.e., deep-frozen and cryo-sectioned) for MALDI imaging of both peptides and lipids. Peptide and lipid imaging was performed in fresh-frozen, FFPE and formalin-fixed/frozen samples of a mouse kidney, then composition of the resulting spectra was compared. We demonstrated similarity of spectra registered during peptide imaging in FFPE and formalin-fixed/frozen tissues, and similarity of spectra registered during lipid imaging in fresh-frozen and formalin-fixed/frozen material. Furthermore, molecular images of formalin-fixed/frozen tissue resembled the features of both fresh-frozen and FFPE tissue in the case of peptide imaging, and the features of fresh-frozen tissue in the case of lipid imaging. We conclude that tissue preserved by formalin fixation and processed without paraffin embedding can be considered as an alternative to both fresh-frozen and FFPE material.
Assuntos
Lipídeos/isolamento & purificação , Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fixação de Tecidos/métodos , Animais , Formaldeído/química , Humanos , Lipídeos/genética , Camundongos , Inclusão em Parafina , Peptídeos/genética , Manejo de EspécimesRESUMO
A new intermediate type of Henle's loop has been reported that it extends into the inner medulla and turns within the first millimeter beyond the outer medulla. This study aimed to identify the descending thin limb (DTL) of the intermediate loop in the adult C57Bl/6 mouse kidney using aquaporin 1 (AQP1) and urea transporter A2 (UT-A2) antibodies. In the upper part of the inner stripe of the outer medulla (ISOM), AQP1 was expressed strongly in the DTL with type II epithelium of the long loop, but not in type I epithelium of the short loop. The DTL of the intermediate loop exhibited weak AQP1 immunoreactivity. UT-A2 immunoreactivity was not observed in the upper part of any DTL type. AQP1 expression was similar in the upper and middle parts of the ISOM. UT-A2 expression was variable, being expressed strongly in the DTL with type I epithelium of the short loop, but not in type II epithelium of the long loop. In the innermost part of the ISOM, AQP1 was expressed only in type III epithelium of the long loop. UT-A2-positive and UT-A2-negative cells were intermingled in type I epithelium of the intermediate loop, but were not observed in type III epithelium of the long loop. UT-A2-positive DTLs of the intermediate loop extended into the UT-A2/AQP1-negative type I epithelium in the initial part of the inner medulla. These results demonstrate that the DTL of the intermediate loop is composed of type I epithelium and expresses both AQP1 and UT-A2. The functional role of the DTL of the intermediate loop may be distinct from the short or long loops.
Assuntos
Aquaporina 1/metabolismo , Medula Renal/metabolismo , Rim/metabolismo , Alça do Néfron/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Aquaporina 1/análise , Rim/química , Medula Renal/química , Alça do Néfron/química , Masculino , Proteínas de Membrana Transportadoras/análise , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de UreiaRESUMO
Following perfusion of adult mouse kidney with a solution of nitroblue tetrazolium (NBT), certain epithelial cells in the pars recta (S3) segments of proximal tubules react to form cytoplasmic deposits of blue diformazan particles. Such cells are characterized by dark cytoplasm, small and often elliptical nuclei, elaborate, process-bearing profiles, and abundant mitochondria. The atypical epithelial cells display the additional characteristic of immunoreactivity for a wide spectrum of antigens, including mesenchymal proteins such as vimentin. Though present in kidneys of untreated or sham-operated animals, they are particularly evident under experimental conditions such as unilateral ureteral obstruction (UUO), appearing in both contralateral and obstructed kidneys over the course of a week's duration, but disappearing from the obstructed kidney as it undergoes the profound atrophy attributable to deterioration of the population of its proximal tubules. The cells do not appear in neonatal kidneys, even those undergoing UUO, but begin to be recognizable soon after weaning (28 days). It is possible that diformazan-positive cells in the mouse S3 tubular segment constitute a resident population of cells that can replenish or augment the tubule. Although somewhat similar cells, with dark cytoplasm and vimentin expression, have been described in human, rat, and transgenic mouse kidney (Smeets et al. in J Pathol 229: 645-659, 2013; Berger et al. in Proc Natl Acad Sci U S A 111: 1533-1538, 2014), those cells-known as "scattered tubule cells" or "proximal tubule rare cells"- differ from the S3-specific cells in that they are present throughout the entire proximal tubule, often lack a brush border, and have only a few mitochondria.
Assuntos
Rim/citologia , Mitocôndrias/metabolismo , Animais , Rim/ultraestrutura , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Coloração e Rotulagem , Obstrução Ureteral/patologiaRESUMO
Ten-Eleven Translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytonsie (5hmC). Our recent work found a decline in global 5hmC level in mouse kidney insulted by ischemia reperfusion (IR). However, the genomic distribution of 5hmC in mouse kidney and its relationship with gene expression remain elusive. Here, we profiled the DNA hydroxymethylome of mouse kidney by hMeDIP-seq and revealed that 5hmC is enriched in genic regions but depleted from intergenic regions. Correlation analyses showed that 5hmC enrichment in gene body is positively associated with gene expression level in mouse kidney. Moreover, IR injury-associated genes (both up- and down-regulated genes during renal IR injury) in mouse kidney exhibit significantly higher 5hmC enrichment in their gene body regions when compared to those un-changed genes. Collectively, our study not only provides the first DNA hydroxymethylome of kidney tissues but also suggests that DNA hyper-hydroxymethylation in gene body may be a novel epigenetic marker of IR injury-associated genes.
Assuntos
5-Metilcitosina/análogos & derivados , Injúria Renal Aguda/genética , Metilação de DNA , Epigênese Genética , Traumatismo por Reperfusão/genética , 5-Metilcitosina/metabolismo , Animais , Expressão Gênica , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The objective of the current study was to explore the inhibitory effects of quercetin on cadmium-induced autophagy in mouse kidneys. Mice were intraperitoneally injected with cadmium and quercetin once daily for 3 days. The LC3-II/ß-actin ratio was used as the autophagy marker, and autophagy was observed by transmission electron microscopy. Oxidative stress was investigated in terms of reactive oxygen species, total antioxidant capacity, and malondialdehyde. Cadmium significantly induced typical autophagosome formation, increased the LC3-II/ß-actin ratio, reactive oxygen species level, and malondialdehyde content, and decreased total antioxidant capacity. Interestingly, quercetin markedly decreased the cadmium-induced LC3-II/ß-actin ratio, reactive oxygen species levels, and malondialdehyde content, and simultaneously increased total antioxidant capacity. Cadmium can inhibit total antioxidant capacity, produce a large amount of reactive oxygen species, lead to oxidative stress, and promote lipid peroxidation, eventually inducing autophagy in mouse kidneys. Quercetin could inhibit cadmium-induced autophagy via inhibition of oxidative stress. This study may provide a theoretical basis for the treatment of cadmium injury.
RESUMO
BACKGROUND: To derive an adapted protocol at ultra high magnetic field for mouse kidney perfusion measurements using pCASL in combination with three widely available fast imaging readouts: segmented SE EPI (sSE EPI), RARE, and TrueFISP. METHODS: pCASL sSE EPI, pCASL RARE, and pCASL TrueFISP were used for the acquisition of mouse kidney perfusion images in the axial and coronal planes at 11.75T. Results were compared in terms of perfusion sensitivity, signal-to-noise ratio (SNR), blood flow values, intrasession and intersession repeatability, and image quality (subjectively classified into three grades: good, satisfactory, and unacceptable). RESULTS: Renal cortex perfusion measurements were performed within 2 min with pCASL RARE/pCASL TrueFISP and 4 min with pCASL sSE EPI. In an axial direction, SNR values of 6.6/5.6/2.8, perfusion sensitivity values of 16.1 ± 3.7/13.6 ± 2.4/13.4 ± 1.0 %, blood flow values of 679 ± 149/466 ± 111/572 ± 46 mL/100 g/min and in-ROI variations values of 192/161/181 mL/100 g/min were obtained with pCASL sSE EPI/pCASL RARE/pCASL TrueFISP. Highest SNR per unit of time (1.8) and highest intra/intersession reliability (92.9% and 95.1%) were obtained with pCASL RARE, which additionally presented highly reproducible satisfactory image quality. In coronal plane, significantly lower SNR, perfusion sensitivity and perfusion values were obtained for all techniques compared with that in the axial plane (P < 0.05) due to magnetization saturation effects. CONCLUSION: pCASL RARE demonstrated more advantages for longitudinal preclinical kidney perfusion studies at ultra high magnetic field.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Rim/fisiologia , Angiografia por Ressonância Magnética/métodos , Artéria Renal/fisiologia , Circulação Renal/fisiologia , Animais , Sistemas Computacionais , Feminino , Aumento da Imagem/métodos , Rim/irrigação sanguínea , Campos Magnéticos , Camundongos , Camundongos Endogâmicos C57BL , Artéria Renal/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de SpinRESUMO
SCOPE: Hyperhomocysteinemia (HHcy) is associated with kidney disease and leads to atherosclerosis and thrombosis. Paraoxonase 1 (Pon1), a hydrolase that participates in homocysteine (Hcy) metabolism and is carried in the circulation on high-density lipoprotein, has also been linked to kidney disease and atherothrombosis. Pon1-knockout mice are susceptible to atherosclerosis and exhibit a kidney-associated phenotype, polyuria or urine dilution. We hypothesize that HHcy and Pon1 deficiency are toxic to kidney function because they impair metabolic pathways important for normal kidney homeostasis. METHODS AND RESULTS: We examined changes in the mouse kidney proteome induced by Pon1 gene deletion and dietary HHcy, using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the expression of ten mouse kidney proteins was altered by the Pon1(-/-) genotype or HHcy. Proteins involved in metabolism of lipid (ApoA-I), protein (Hspd1), carbohydrate (Pdhb, Fbp1-isoform2, Eno1), and energy (Ndufs8, Ldhd) were down-regulated. Proteins involved in lipid transport (Pebp1), oxidative stress response (Prdx2), and cellular detoxification (Glo1) were up-regulated. The kidney proteins altered by HHcy or Pon1 are also altered in renal disease. CONCLUSION: Our findings suggest that excess Hcy is toxic because it deregulates the expression of proteins involved in diverse cellular processes-from lipid, protein, carbohydrate, and energy metabolisms to detoxification and antioxidant defenses-that are essential for normal kidney homeostasis. Dysregulation of these processes can account for the involvement of HHcy and reduced Pon1 in kidney disease. Our findings also show that Pon1 plays an important role in maintaining normal kidney homeostasis.
Assuntos
Arildialquilfosfatase/deficiência , Hiper-Homocisteinemia/metabolismo , Rim/metabolismo , Animais , Arildialquilfosfatase/genética , Expressão Gênica , Camundongos Endogâmicos C57BL , Proteoma/metabolismoRESUMO
SCOPE: Hyperhomocysteinemia (HHcy) induced by dietary or genetic factors is linked to kidney disease. Bleomycin hydrolase (Blmh) metabolizes Hcy-thiolactone to Hcy. We aimed to explain the role of dietary HHcy in kidney disease. METHODS AND RESULTS: We examined kidney proteome in dietary HHcy and Blmh-knockout mouse models using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the kidney proteome was altered by dietary HHcy and the Blmh(-/-) genotype. Proteins involved in metabolism of lipoprotein (ApoA1), amino acid and protein (Acy1, Hspd1), carbohydrate (Pdhb, Fbp1-isoform 1, Eno1), and energy metabolism (Ndufs8, Ldhd) were down-regulated. Proteins involved in carbohydrate metabolism (Fbp1-isoform 2), oxidative stress response (Prdx2), and detoxification (Glod4) were up-regulated. The Blmh(-/-) genotype down-regulated Glod4 isoform 3 mRNA but did not affect isoform 1 mRNA expression in mouse kidneys, suggesting post-transcriptional regulation of the Glod4 protein by the Blmh(+/+) genotype. Responses of ApoA1, Acy1, Hspd1, Ndufs8, Fbp1, Eno1, and Prdx2 to HHcy and/or Blmh deficiency mimic their responses to renal disease. CONCLUSION: Our findings indicate that Blmh interacts with diverse cellular processes--lipoprotein, amino acid and protein, carbohydrate, and energy metabolisms, detoxification, antioxidant defenses--that are essential for normal kidney homeostasis and that deregulation of these processes can account for the involvement of HHcy in kidney disease.
Assuntos
Cisteína Endopeptidases/deficiência , Hiper-Homocisteinemia/enzimologia , Nefropatias/enzimologia , Nefropatias/patologia , Rim/metabolismo , Proteínas/metabolismo , Animais , Western Blotting , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Dieta , Eletroforese em Gel de Poliacrilamida , Regulação Enzimológica da Expressão Gênica , Genótipo , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/patologia , Focalização Isoelétrica , Metionina , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos TestesRESUMO
The major roles of filtration, metabolism and high blood flow make the kidney highly vulnerable to drug-induced toxicity and other renal injuries. A method to follow kidney function is essential for the early screening of toxicity and malformations. In this study, we acquired high spatiotemporal resolution (four dimensional) datasets of normal mice to follow changes in kidney structure and function during development. The data were acquired with dynamic contrast-enhanced MRI (via keyhole imaging) and a cryogenic surface coil, allowing us to obtain a full three-dimensional image (isotropic resolution, 125 microns) every 7.7 s over a 50-min scan. This time course permitted the demonstration of both contrast enhancement and clearance. Functional changes were measured over a 17-week course (at 3, 5, 7, 9, 13 and 17 weeks). The time dimension of the MRI dataset was processed to produce unique image contrasts to segment the four regions of the kidney: cortex (CO), outer stripe (OS) of the outer medulla (OM), inner stripe (IS) of the OM and inner medulla (IM). Local volumes, time-to-peak (TTP) values and decay constants (DC) were measured in each renal region. These metrics increased significantly with age, with the exception of DC values in the IS and OS. These data will serve as a foundation for studies of normal renal physiology and future studies of renal diseases that require early detection and intervention.
Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Testes de Função Renal/métodos , Rim/anatomia & histologia , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture. This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.
Assuntos
Envelhecimento , Aprendizado de Máquina , Camundongos , Animais , Envelhecimento/patologia , RimRESUMO
Arterial delivery to the kidney offers significant potential for targeted accumulation and retention of cells, genetic material, and drugs, both in free and encapsulated forms, because the entire dose passes through the vessels feeding this organ during the first circulation of blood. At the same time, a detailed study on the safety and effectiveness of developed therapies in a large number of experimental animals is required. Small laboratory animals, especially mice, are the most sought-after in experimental and preclinical testing due to their cost-effectiveness. Most of the described manipulations in mice involve puncturing the walls of the abdominal aorta or renal artery for direct administration of solutions and suspensions. Such manipulations are temporary and, in some cases, result in long-term occlusion of the aorta. Ultimately, this can lead to disruption of blood flow as well as functional and morphological changes to the kidneys. In addition, few of these protocols describe targeted delivery to the kidney. The presented protocol involves the injection of test substances or suspensions through the renal artery into one of the kidneys. The catheter is implanted into the femoral artery and then advanced into the abdominal aorta and renal artery within the vessels. In this case, the integrity violation of the renal artery or abdominal aorta is absent. Occlusion of the renal artery is necessary only immediately at the time of injection to minimize the entry of the injected substance into the aorta. This protocol is similar to the clinical procedure for delivering a catheter into the renal artery and is designed for real-world operating conditions. Key features ⢠The protocol involves implantation of a catheter into the vascular system through a puncture of the femoral artery, similar to the clinical procedure. ⢠The catheter is moved inside the vessels without puncture or ligation to the aorta or renal artery. ⢠The protocol involves only a short-term block of the blood supply to the target kidney (the time required for direct administration of the drug). ⢠Suitable for chronic experiments on mice, since the catheter is removed from the vascular system immediately after drug administration.
RESUMO
Suborgan absorbed dose estimates in mouse kidneys are crucial to support preclinical nephrotoxicity analyses of α- and ß-particle-emitting radioligands exhibiting a heterogeneous activity distribution in the kidneys. This is, however, limited by the scarcity of reference dose factors (S values) available in the literature for specific mouse kidney tissues. Methods: A computational multiregion model of a mouse kidney based on high-resolution MRI data from a healthy mouse kidney was developed. The model was used to calculate S values for 5 kidney tissues (cortex, outer and inner stripes of outer medulla, inner medulla, and papilla and pelvis) for a wide range of ß- or α-emitting radionuclides (45 in total) of interest for radiopharmaceutical therapy, using Monte Carlo calculations. Additionally, regional S values were applied for a 131I-labeled single-domain antibody fragment with predominant retention in the outer stripe of the renal outer medulla. Results: The heterogeneous activity distribution in kidneys of considered α- and low- to medium-energy ß-emitters considerably affected the absorbed dose estimation in specific suborgan regions. The suborgan tissue doses resulting from the nonuniform distribution of the 131I-labeled antibody fragment largely deviated (from -40% to 57%) from the mean kidney dose resulting from an assumed uniform activity distribution throughout the whole kidney. The absorbed dose in the renal outer stripe was about 2.0 times higher than in the cortex and in the inner stripe and about 2.6 times higher than in inner tissues. Conclusion: The use of kidney regional S values allows a more realistic estimation of the absorbed dose in different renal tissues from therapeutic radioligands with a heterogeneous uptake in the kidneys. This constitutes an improvement from the simplistic (less accurate) renal dose estimates assuming a uniform distribution of activity throughout kidney tissues. Such improvement in dosimetry is expected to support preclinical studies essential for a better understanding of nephrotoxicity in humans. The dosimetric database has added value in the development of new molecular vectors for radiopharmaceutical therapy.
Assuntos
Rim , Compostos Radiofarmacêuticos , Camundongos , Animais , Humanos , Compostos Radiofarmacêuticos/efeitos adversos , Radiometria/métodos , Radioisótopos do Iodo , Modelos Animais de DoençasRESUMO
Cadmium-induced nephrotoxicity has been one of the major concerns for public health over the past century. Lipid peroxidation is a principal mechanism in its pathological process. Atmospheric pressure-MALDI mass spectrometry imaging (AP-MALDI MSI) enables direct mapping of lipids in the biological tissue sections. Considering the spatial visualization of lipids on mouse kidney tissues with acute cadmium toxicity is lacking, this study dedicates to filling the gap by using AP-MALDI MSI. Of the tested matrices, the optimized matrix for labeling lipids was 2,5-dihydroxyacetophenone (DHAP). A set of lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidic acid (PA), triglyceride (TG), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), etc. were identified and visualized. Accordingly, PC, PG, LPC, SM, PA and TG were down-regulated while PE and PI were up-regulated in the renal cortex or medulla regions in kidney tissues of the mouse with acute cadmium toxicity. Such in situ locations of lipids on mouse kidney tissues with acute cadmium toxicity could help discover tissue-specific nephrotoxic biomarkers and provide new insights into its renal toxicological mechanism.