Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Annu Rev Immunol ; 34: 479-510, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26927205

RESUMO

CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.


Assuntos
Doenças Autoimunes/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/fisiologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vigilância Imunológica , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética
2.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595566

RESUMO

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a Tumor
3.
J Clin Immunol ; 44(6): 139, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822857

RESUMO

We evaluated the impact of early recovery of mucosal-associated invariant T cells (MAIT) and gamma-delta (γδ) T cells, especially Vδ2+ T cells, on the clinical outcomes of 76 patients who underwent allogeneic hematopoietic cell transplantation (allo-HCT). MAIT cells were identified at day 20-30 post-transplant using flow cytometry and defined as CD3+ TCRVα7.2+CD161+. Two subsets of Vδ2+ T cells were analyzed according to the expression of CD26. The cytotoxicity profile of MAIT and Vδ2+ T cells was analyzed according to the intracellular expression of perforin and granzyme B, and intracellular IFN-γ was evaluated after in vitro activation. CD26+Vδ2+ T cells displayed higher intracellular levels of IFN-γ, whereas CD26- Vδ2+ T were found to be more cytotoxic. Moreover, MAIT cell frequency was correlated with the frequency of Vδ2+ T cells with a better correlation observed with Vδ2+CD26+ than with the Vδ2+CD26- T cell subset. By using the composite endpoint graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) as the primary endpoint, we found that patients with a higher MAIT cell frequency at day 20-30 after allo-HCT had a significantly increased GRFS and a better overall survival (OS) and disease-free survival (DFS). Moreover, patients with a low CD69 expression by MAIT cells had an increased cumulative incidence of grade 2-4 acute GvHD (aGvHD). These results suggest that MAIT cell reconstitution may provide mitigating effects early after allo-HCT depending on their activation markers and functional status. Patients with a high frequency of Vδ2+CD26+ T cells had a significantly higher GRFS, OS and DFS, but there was no impact on cumulative incidence of grade 2-4 aGVHD, non-relapse mortality and relapse. These results revealed that the impact of Vδ2+ T cells on the success of allo-HCT may vary according to the frequency of the CD26+ subset.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/etiologia , Células T Invariantes Associadas à Mucosa/imunologia , Adulto Jovem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adolescente , Idoso , Resultado do Tratamento , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Dipeptidil Peptidase 4/metabolismo , Citotoxicidade Imunológica
4.
Scand J Immunol ; : e13391, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773691

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

5.
J Allergy Clin Immunol ; 152(5): 1153-1166.e12, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437744

RESUMO

BACKGROUND: Immune regulation in chronic rhinosinusitis with nasal polyps (CRSwNP) with a neutrophilic endotype remains unclear. Mucosal-associated invariant T (MAIT) cells are tissue-resident innate T lymphocytes that respond quickly to pathogens and promote chronic mucosal inflammation. OBJECTIVE: We aimed to investigate the roles of MAIT cells in neutrophilic CRSwNP. METHODS: Nasal tissues were obtained from 113 patients with CRSwNP and 29 control subjects. Peripheral and tissue MAIT cells and their subsets were analyzed by flow cytometry. Polyp-derived MAIT cells were analyzed by RNA sequencing to study their effects on neutrophils. RESULTS: Endotypes of CRSwNP were classified as paucigranulocytic (n = 21), eosinophilic (n = 29), neutrophilic (n = 39), and mixed granulocytic (n = 24). Frequencies of MAIT cells were significantly higher in neutrophilic (3.62%) and mixed granulocytic (3.60%) polyps than in control mucosa (1.78%). MAIT cell percentages positively correlated with local neutrophil counts. MAIT cells were more enriched in tissues than in matched PBMCs. The frequencies of MAIT1 subset or IFN-γ+ MAIT cells were comparable among control tissues and CRSwNP subtypes. The proportions of MAIT17 subset or IL-17A+ MAIT cells were significantly increased in neutrophilic or mixed granulocytic polyps compared with controls. RNA sequencing revealed type 17 and pro-neutrophil profiles in neutrophilic polyp-derived MAIT cells. In patients with neutrophilic CRSwNP, the proportions of MAIT and MAIT17 cells were positively correlated with local proinflammatory cytokines and symptom severity. In vitro experiments demonstrated that neutrophilic polyp-derived MAIT cells promoted neutrophil migration, survival, and activation. CONCLUSIONS: MAIT cells from neutrophilic CRSwNP demonstrate type 17 functional properties and promote neutrophil infiltration in nasal mucosa.


Assuntos
Células T Invariantes Associadas à Mucosa , Pólipos Nasais , Rinite , Sinusite , Humanos , Inflamação/complicações , Citocinas , Doença Crônica
6.
Allergol Int ; 73(1): 94-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37336695

RESUMO

BACKGROUND: Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS: Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS: The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS: This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.


Assuntos
Asma , Células T Invariantes Associadas à Mucosa , Humanos , Animais , Camundongos , Neutrófilos , Periostina , Imunidade Inata , Modelos Animais de Doenças , Ovalbumina/uso terapêutico , Qualidade de Vida , Linfócitos , Inflamação , Biomarcadores , Camundongos Knockout
7.
Cancer Immunol Immunother ; 72(12): 4399-4414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932426

RESUMO

Increasing evidence suggests that mucosal-associated invariant T cells (MAITs) play a crucial role in anti-tumor responses against various cancers. In this study, we investigated the immune characteristics of MAIT cells in patients with acute myeloid leukemia (AML). Using multi-parameter flow cytometry, we performed phenotypic and functional analysis of MAITs in peripheral blood or bone marrow samples collected from 131 patients with AML including 99 newly diagnosed, 18 remission, and 14 relapsed cases, as well as 69 healthy controls. We found that MAITs exhibit signs of aging and exhaustion, particularly in CD8+ MAITs subset, at newly diagnosis. MAITs exhibit an effector memory or terminally differentiated phenotype. Frequency and number of MAITs reflect AML cell genetic features, tumor burden, disease status, and treatment responsiveness. Moreover, MAITs exhibit a highly activated or even exhausted state, as indicated by upregulation of PD-1. Furthermore, impaired production of Th1-type cytokines and increased secretion of Th17-type cytokines, granzyme B, and perforin were observed in MAITs from AML patients. Additionally, MAITs shifted toward producing cytokines that promote tumor progression, such as IL-8. Lower frequency of MAITs was associated with poorer overall survival (OS), and multivariate analysis revealed that MAITs frequency < 2.12% was an independent prognostic factor affecting OS. Collectively, our findings suggest that MAITs may play a role in immune deficiency in AML, emphasizing their potential importance in AML pathogenesis and treatment. These discoveries provide a theoretical basis for the development of novel immunotherapeutic strategies in AML.


Assuntos
Leucemia Mieloide Aguda , Células T Invariantes Associadas à Mucosa , Humanos , Prognóstico , Citocinas , Células Th17
8.
Diabetes Metab Res Rev ; 39(4): e3620, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738300

RESUMO

AIMS: It is acknowledged that aberrant liver immunity contributes to the development of type 2 diabetes mellitus (T2DM). Mucosal-associated invariant T (MAIT) cells, an innate-like T-cell subset, are enriched in the human liver. Nevertheless, the characterisation and potential role of hepatic MAIT cells in T2DM remain unclear. MATERIALS AND METHODS: Fourteen newly diagnosed T2DM subjects and 15 controls received liver biopsy. The frequency and cytokine production of MAIT cells were analysed by flow cytometry. The expression of genes involved in glucose metabolism was determined in HepG2 cells co-cultured with hepatic MAIT cells. RESULTS: Compared with controls, hepatic MAIT cell frequency was significantly increased in T2DM patients (24.66% vs. 14.61%, p = 0.001). There were more MAIT cells producing interferon-γ (IFN-γ, 60.49% vs. 33.33%, p = 0.021) and tumour necrosis factor-α (TNF-α, 46.84% vs. 5.91%, p = 0.021) in T2DM than in controls, whereas their production of interleukin 17 (IL-17) was comparable (15.25% vs. 4.55%, p = 0.054). Notably, an IFN-γ+ TNF-α+ IL-17+/- producing MAIT cell subset was focussed, which showed an elevated proportion in T2DM (42.66% vs. 5.85%, p = 0.021) and positively correlated with plasma glucose levels. A co-culture experiment further indicated that hepatic MAIT cells from T2DM upregulated the gene expression of pyruvate carboxylase, a key molecule involved in gluconeogenesis, in HepG2 cells, and this response was blocked with neutralising antibodies against IFN-γ and TNF-α. CONCLUSIONS: Our data implicate an increased Th1-like MAIT cell subset in the liver of newly diagnosed T2DM subjects, which induces hyperglycaemia by promoting hepatic gluconeogenesis. It provides novel insights into the immune regulation of metabolic homoeostasis. CLINICAL TRIAL REGISTRATION NUMBER: NCT03296605 (registered at www. CLINICALTRIALS: gov on 12 October 2018).


Assuntos
Diabetes Mellitus Tipo 2 , Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/fisiologia , Interleucina-17 , Fator de Necrose Tumoral alfa , Gluconeogênese , Fígado
9.
J Allergy Clin Immunol ; 149(2): 599-609.e7, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34403659

RESUMO

BACKGROUND: Diverse immune cells contribute to the pathogenesis of chronic rhinosinusitis (CRS), an inflammatory disease of the nasal cavity and paranasal sinuses. However, whether mucosal-associated invariant T (MAIT) cells are present in human sinonasal tissues remains unclear. Furthermore, the characteristics of sinonasal MAIT cells have not been studied in patients with CRS. OBJECTIVE: We investigated the phenotype, function, and clinical implications of MAIT cells in patients with CRS. METHODS: Peripheral blood and sinonasal tissue were obtained from patients with CRS with (CRSwNP) or without nasal polyps (CRSsNP) and healthy controls. MAIT cells were analyzed by flow cytometry. RESULTS: We found that MAIT cells are present in human sinonasal tissues from healthy controls and patients with CRS. The sinonasal MAIT cell population, but not peripheral blood MAIT cells, from patients with CRSsNP, noneosinophilic CRSwNP (NE-NP), or eosinophilic CRSwNP (E-NP) had a significantly higher frequency of activated cells marked by CD38 expression. In functional analysis, the sinonasal MAIT cell population from NE-NP and E-NP had a significantly higher frequency of IL-17A+ cells but lower frequency of IFN-γ+ or TNF+ cells than control sinonasal tissues. Furthermore, CD38 expression and IL-17A production by sinonasal MAIT cells significantly correlated with disease extent evaluated by the Lund-Mackay computed tomography score in patients with E-NP. CONCLUSIONS: Sinonasal MAIT cells exhibit an activated phenotype and produce higher levels of IL-17A in patients with CRSwNP. These alterations are associated with the extent of disease in patients with E-NP.


Assuntos
Interleucina-17/biossíntese , Células T Invariantes Associadas à Mucosa/imunologia , Pólipos Nasais/imunologia , Seios Paranasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Diabetologia ; 65(6): 1012-1017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305128

RESUMO

AIMS/HYPOTHESIS: Mucosal-associated invariant T cells (MAIT cells) are an abundant population of innate T cells. When activated, MAIT cells rapidly produce a range of cytokines, including IFNγ, TNF-α and IL-17. Several studies have implicated MAIT cells in the development of metabolic dysfunction, but the mechanisms through which this occurs are not fully understood. We hypothesised that MAIT cells are associated with insulin resistance in children with obesity, and affect insulin signalling through their production of IL-17. METHODS: In a cross-sectional observational study, we investigated MAIT cell cytokine profiles in a cohort of 30 children with obesity and 30 healthy control participants, of similar age, using flow cytometry. We then used a cell-based model to determine the direct effect of MAIT cells and IL-17 on insulin signalling and glucose uptake. RESULTS: Children with obesity display increased MAIT cell frequencies (2.2% vs 2.8%, p=0.047), and, once activated, these produced elevated levels of both TNF-α (39% vs 28%, p=0.03) and IL-17 (1.25% vs 0.5%, p=0.008). The IL-17-producing MAIT cells were associated with an elevated HOMA-IR (r=0.65, p=0.001). The MAIT cell secretome from adults with obesity resulted in reduced glucose uptake when compared with the secretome from healthy adult control (1.31 vs 0.96, p=0.0002), a defect that could be blocked by neutralising IL-17. Finally, we demonstrated that recombinant IL-17 blocked insulin-mediated glucose uptake via inhibition of phosphorylated Akt and extracellular signal-regulated kinase. CONCLUSIONS/INTERPRETATIONS: Collectively, these studies provide further support for the role of MAIT cells in the development of metabolic dysfunction, and suggest that an IL-17-mediated effect on intracellular insulin signalling is responsible.


Assuntos
Resistência à Insulina , Células T Invariantes Associadas à Mucosa , Obesidade Infantil , Adulto , Criança , Estudos Transversais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária , Obesidade Infantil/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Immunol Cell Biol ; 100(7): 547-561, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35514192

RESUMO

Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells mediating protection against bacterial infection through recognition of microbial metabolites derived from riboflavin biosynthesis. Mouse MAIT cells egress from the thymus as two main subpopulations with distinct functions, namely, T-bet-expressing MAIT1 and RORγt-expressing MAIT17 cells. Previously, we reported that inducible T-cell costimulator and interleukin (IL)-23 provide essential signals for optimal MHC-related protein 1 (MR1)-dependent activation and expansion of MAIT17 cells in vivo. Here, in a model of tularemia, in which MAIT1 responses predominate, we demonstrate that IL-12 and IL-23 promote MAIT1 cell expansion during acute infection and that IL-12 is indispensable for MAIT1 phenotype and function. Furthermore, we showed that the bias toward MAIT1 or MAIT17 responses we observed during different bacterial infections was determined and modulated by the balance between IL-12 and IL-23 and that these responses could be recapitulated by cytokine coadministration with antigen. Our results indicate a potential for tailored immunotherapeutic interventions via MAIT cell manipulation.


Assuntos
Infecções Bacterianas , Células T Invariantes Associadas à Mucosa , Animais , Citocinas , Antígenos de Histocompatibilidade Classe I/metabolismo , Interleucina-12 , Interleucina-23 , Camundongos
12.
J Med Virol ; 94(7): 3043-3053, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35243649

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%-40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological nonresponders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T-cell subset defined by expression of semi-invariant αß T-cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex-related protein-1. MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T-cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals.


Assuntos
Infecções por HIV , Reconstituição Imune , Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo
13.
J Clin Periodontol ; 49(7): 706-716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569027

RESUMO

AIM: Mucosal-associated invariant T (MAIT) cells are known to be resident in oral mucosal tissue, but their roles in periodontitis are unknown. This study aimed to examine the level and function of MAIT cells in periodontitis patients. MATERIALS AND METHODS: Frequency, activation, and function of MAIT cells from 28 periodontitis patients and 28 healthy controls (HCs) were measured by flow cytometry. RESULTS: Circulating MAIT cells were numerically reduced in periodontitis patients. Moreover, they exhibited higher expression of CD69 and annexin V, together with more increased production of interleukin (IL)-17 and tumour necrosis factor (TNF)-α, in periodontitis patients than in HCs. Interestingly, periodontitis patients had higher frequencies of MAIT cells in gingival tissue than in peripheral blood. In addition, circulating MAIT cells had elevated expression of tissue-homing chemokine receptors such as CCR6 and CXCR6, and the corresponding chemokines (i.e., CCL20 and CXCL16) were more strongly expressed in inflamed gingiva than in healthy gingiva. CONCLUSIONS: This study demonstrates that circulating MAIT cells are numerically deficient with an activated profile toward the production of IL-17 and TNF-α in periodontitis patients. Furthermore, circulating MAIT cells have the potential to migrate to inflamed gingival tissues.


Assuntos
Interleucina-17/biossíntese , Células T Invariantes Associadas à Mucosa , Periodontite , Fator de Necrose Tumoral alfa/biossíntese , Citometria de Fluxo , Humanos , Interleucina-17/metabolismo , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/metabolismo , Periodontite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Eur J Immunol ; 50(8): 1098-1108, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32617963

RESUMO

Mucosal associated invariant T (MAIT) cells are a population of evolutionarily conserved T cells, which express an invariant T cell receptor (TCR) and represent a significant subset of innate-like T cells in humans, yet their role in immunity is still emerging. Unlike conventional αß T cells, MAIT cells are not restricted by MHC molecules, but instead uniquely recognize microbially derived vitamin metabolites presented by the MHC-I like molecule MR1. MAIT cells are enriched in mucosal sites and tissues including liver and adipose tissue where they are thought to play an important role in immunosurveillance and immunity against microbial infection. In addition to their putative role in antimicrobial immunity, recent research on MAIT cells, in particular IL-17 producing MAIT cells, has demonstrated their involvement in numerous chronic inflammatory conditions. In this review, we give an overview of the work to date on the function and subsets of MAIT cells. We also examine the role of IL-17 producing MAIT cells in chronic inflammatory diseases ranging from autoimmune conditions, metabolic diseases to cancer. Furthermore, we discuss the most recent findings from the clinic that might help deepen our understanding about the biology of MAIT cells.


Assuntos
Inflamação/etiologia , Interleucina-17/biossíntese , Células T Invariantes Associadas à Mucosa/fisiologia , Doenças Autoimunes/etiologia , Infecções Bacterianas/imunologia , Doença Crônica , Humanos , Doenças Metabólicas/etiologia , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias/etiologia , Fenótipo
15.
Eur J Immunol ; 50(2): 192-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710099

RESUMO

Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.


Assuntos
Diacilglicerol Quinase/imunologia , Diacilglicerol Quinase/metabolismo , Diglicerídeos/imunologia , Diglicerídeos/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Camundongos , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
16.
Eur J Immunol ; 50(2): 178-191, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608441

RESUMO

Mucosal associated invariant T (MAIT) cells are abundant unconventional T cells that can be stimulated either via their TCR or by innate cytokines. The MAIT cell TCR recognises a pyrimidine ligand, derived from riboflavin synthesising bacteria, bound to MR1. In infection, bacteria not only provide the pyrimidine ligand but also co-stimulatory signals, such as TLR agonists, that can modulate TCR-mediated activation. Recently, type I interferons (T1-IFNs) have been identified as contributing to cytokine-mediated MAIT cell activation. However, it is unknown whether T1-IFNs also have a role during TCR-mediated MAIT cell activation. In this study, we investigated the co-stimulatory role of T1-IFNs during TCR-mediated activation of MAIT cells by the MR1 ligand 5-amino-6-d-ribitylaminouracil/methylglyoxal. We found that T1-IFNs were able to boost interferon-γ and granzyme B production in 5-amino-6-d-ribitylaminouracil/methylglyoxal-stimulated MAIT cells. Similarly, influenza virus-induced T1-IFNs enhanced TCR-mediated MAIT cell activation. An essential role of T1-IFNs in regulating MAIT cell activation by riboflavin synthesising bacteria was also demonstrated. The co-stimulatory role of T1-IFNs was also evident in liver-derived MAIT cells. T1-IFNs acted directly on MAIT cells to enhance their response to TCR stimulation. Overall, our findings establish an important immunomodulatory role of T1-IFNs during TCR-mediated MAIT cell activation.


Assuntos
Interferon Tipo I/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Imunidade Inata/imunologia , Interferon gama/imunologia , Ligantes , Ativação Linfocitária/imunologia
17.
Chembiochem ; 22(4): 672-678, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33034934

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant subset of innate-like T lymphocytes. MAIT cells are activated by microbial riboflavin-derived antigens, such as 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), when presented by the major histocompatibility complex (MHC) class I-related protein (MR1). We have synthesized all stereoisomers of 5-OP-RU to investigate the effects of its stereochemistry on the MR1-dependent MAIT cell activation and MR1 upregulation. The analysis of MAIT cell activation by these 5-OP-RU isomers revealed that the stereocenters at the 2'- and 3'-OH groups in the ribityl tail are crucial for the recognition of MAIT-TCR, whereas that of 4'-OH group does not significantly affect the regulation of MAIT cell activity. Furthermore, kinetic analysis of complex formation between the ligands and MR1 suggested that 5-OP-RU forms a covalent bond to MR1 in cells within 1 hour. These findings provide guidelines for designing ligands that regulate MAIT cell functions.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Ribitol/análogos & derivados , Uracila/análogos & derivados , Humanos , Cinética , Ligantes , Ativação Linfocitária , Ribitol/química , Ribitol/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Uracila/química , Uracila/metabolismo
18.
Semin Cell Dev Biol ; 84: 58-64, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449535

RESUMO

MR1 is a non-classical class I molecule that is highly conserved among mammals. Though discovered in 1995, only recently have MR1 ligands and antigens for MR1-restricted T cells been described. Unlike the traditional class I molecules HLA-A, -B, and -C, little MR1 is on the cell surface. Rather, MR1 resides in discrete intracellular vesicles and the endoplasmic reticulum, and can present non-peptidic small molecules such as those found in the riboflavin biosynthesis pathway. Since mammals do not synthesize riboflavin, MR1 can serve as a sensor of the microbial metabolome and could be key to the early detection of intracellular infection. This review will summarize the current understanding of MR1-dependent antigen presentation.


Assuntos
Apresentação de Antígeno/imunologia , Membrana Celular/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia , Animais , Humanos , Ligantes
19.
J Hepatol ; 73(3): 640-650, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32247824

RESUMO

BACKGROUND & AIMS: Mucosal-associated invariant T (MAIT) cells, the most abundant innate-like T cells in the human liver, can be activated by cytokines during viral infection without TCR stimulation. Here, we examined the mechanisms underlying TCR/MR1-independent innate-like cytotoxicity of cytokine-activated liver MAIT cells. We also examined the phenotype and function of MAIT cells from patients with acute viral hepatitis. METHODS: We obtained liver sinusoidal mononuclear cells from donor liver perfusate during liver transplantation and examined the effect of various cytokines on liver MAIT cells using flow cytometry and in vitro cytotoxicity assays. We also obtained peripheral blood and liver-infiltrating T cells from patients with acute hepatitis A (AHA) and examined the phenotype and function of MAIT cells using flow cytometry. RESULTS: IL-15-stimulated MAIT cells exerted granzyme B-dependent innate-like cytotoxicity in the absence of TCR/MR1 interaction. PI3K-mTOR signaling, NKG2D ligation, and CD2-mediated conjugate formation were critically required for this IL-15-induced innate-like cytotoxicity. MAIT cells from patients with AHA exhibited activated and cytotoxic phenotypes with higher NKG2D expression. The innate-like cytotoxicity of MAIT cells was significantly increased in patients with AHA and correlated with serum alanine aminotransferase levels. CONCLUSIONS: Taken together, the results demonstrate that liver MAIT cells activated by IL-15 exert NKG2D-dependent innate-like cytotoxicity in the absence of TCR/MR1 engagement. Furthermore, the innate-like cytotoxicity of MAIT cells is associated with liver injury in patients with AHA, suggesting that MAIT cells contribute to immune-mediated liver injury. LAY SUMMARY: Immune-mediated liver injury commonly occurs during viral infections of the liver. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the human liver. Herein, we have identified a mechanism by which MAIT cells circumvent conventional T cell receptor interactions to exert cytotoxicity. We show that this innate-like cytotoxicity is increased during acute hepatitis A virus infection and correlates with the degree of hepatocyte injury.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Vírus da Hepatite A Humana , Hepatite A/sangue , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunidade Inata/efeitos dos fármacos , Interleucina-15/farmacologia , Fígado/imunologia , Doadores Vivos , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Doença Aguda , Adulto , Células Cultivadas , Feminino , Hepatite A/virologia , Humanos , Células Matadoras Naturais/imunologia , Transplante de Fígado/métodos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
20.
Rheumatology (Oxford) ; 59(8): 2124-2134, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087015

RESUMO

OBJECTIVE: This study was designed to investigate the role of mucosal-associated invariant T (MAIT) cells in gouty arthritis (GA) and their effects on osteoclastogenesis. METHODS: Patients with GA (n = 61), subjects with hyperuricaemia (n = 11) and healthy controls (n = 30) were enrolled in this study. MAIT cells, cytokines, CD69, programmed death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells in the presence of M-CSF and RANK ligand. RESULTS: Circulating MAIT cell levels were significantly reduced in GA patients. However, their capacities for IFN-γ, IL-17 and TNF-α production were preserved. Expression levels of CD69, PD-1 and LAG-3 in MAIT cells were found to be elevated in GA patients. In particular, CD69 expression in circulating MAIT cells was increased by stimulation with MSU crystals, suggesting that deposition of MSU crystals might contribute to MAIT cell activation. Interestingly, MAIT cells were found to be accumulated in synovial fluid and infiltrated into gouty tophus tissues within joints. Furthermore, activated MAIT cells secreted pro-resorptive cytokines (i.e. IL-6, IL-17 and TNF-α) and facilitated osteoclastogenesis. CONCLUSION: This study demonstrates that circulating MAIT cells are activated and numerically deficient in GA patients. In addition, MAIT cells have the potential to migrate to inflamed tissues and induce osteoclastogenesis. These findings provide an important role of MAIT cells in the pathogenesis of inflammation and bone destruction in GA patients.


Assuntos
Artrite Gotosa/metabolismo , Hiperuricemia/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Osteogênese/fisiologia , Adulto , Idoso , Movimento Celular/fisiologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA