Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Chromosome Res ; 32(2): 5, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502277

RESUMO

Artemisia is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (Artemisia annua, Artemisia vulgaris, Artemisia viridisquama), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 Artemisia species with 5 outgroup species from Ajania and Chrysanthemum. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for Artemisia vulgaris, Artemisia leucophylla, and Artemisia viridisquama. One species (Artemisia verbenacea) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in Artemisia plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the Artemisia genus using molecular cytological methods.


Assuntos
Artemisia , Artemisia/genética , Hibridização in Situ Fluorescente , Filogenia , DNA Satélite/genética , Variações do Número de Cópias de DNA
2.
Nano Lett ; 24(14): 4194-4201, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497588

RESUMO

Single-particle tracking (SPT) is a powerful technique to unveil molecular behaviors crucial to the understanding of many biological processes, but it is limited by factors such as probe photostability and spectral orthogonality. To overcome these limitations, we develop upconverting nanoparticles (UCNPs), which are photostable over several hours at the single-particle level, enabling long-term multicolor SPT. We investigate the brightness of core-shell UCNPs as a function of inert shell thickness to minimize particle size while maintaining sufficient signal for SPT. We explore different rare-earth dopants to optimize for the brightest probes and find that UCNPs doped with 2% Tm3+/30% Yb3+, 10% Er3+/90% Yb3+, and 15% Tm3+/85% Yb3+ represent the optimal probes for blue, green, and near-infrared emission, respectively. The multiplexed 10 nm probes enable three-color single-particle tracking on live HeLa cells for tens of minutes using a single, near-infrared excitation source. These photostable and multiplexed probes open new avenues for numerous biological applications.

3.
Nano Lett ; 24(23): 7019-7024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808680

RESUMO

We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.

4.
Nano Lett ; 24(10): 3028-3035, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411557

RESUMO

Multicolor afterglow patterns with transparent and traceless features are important for the exploration of new functionalities and applications. Herein, we report a direct in situ patterning technique for fabricating afterglow carbon dots (CDs) based on laser direct writing (LDW) for the first time. We explore a facile step-scanning method that reduces the heat-affected zone and avoids uneven heating, thus producing a fine-resolution afterglow CD pattern with a minimum line width of 80 µm. Unlike previous LDW-induced luminescence patterns, the patterned CD films are traceless and transparent, which is mainly attributed to a uniform heat distribution and gentle temperature rise process. Interestingly, by regulating the laser parameters and CD precursors, an increased carbonization and oxidation degree of CDs could be obtained, thus enabling time-dependent, tunable afterglow colors from blue to red. In addition, we demonstrate their potential applications in the in situ fabrication of flexible and stretchable optoelectronics.

5.
Nano Lett ; 24(36): 11141-11148, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214569

RESUMO

Multicolor fluorescence microscopy is an essential tool to visualize structures and dynamics in the life and materials sciences. However, the near-simultaneous acquisition of labels differing in excitation spectrum is difficult and renders such measurements prone to artifacts. We present a simple strategy to provide quasi-simultaneous fluorescence imaging with multiple excitation wavelengths by using an optical element to displace the sample image on the sensor at a rate that is much faster than the image acquisition rate and synchronizing this with the illumination. The emission elicited by the different wavelengths can then be encoded into the point-spread function of the imaging or visualized as multiple distinct images. In doing so, our approach can eliminate or mitigate artifacts caused by temporal aliasing in conventional sequential imaging. We demonstrate the use of our system to uncover hidden emissive states in single quantum dots and for the imaging of Ca2+ signaling in neurons.

6.
Eur J Immunol ; 53(2): e2249990, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433684

RESUMO

Adipose tissue inflammation is a driving factor for the development of obesity-associated metabolic disturbances, and a role of adipose tissue T cells in initiating the pro-inflammatory signaling is emerging. However, data on human adipose tissue T cells in obesity are limited, reflected by the lack of phenotypic markers to define tissue-resident T cell subsets. In this study, we performed a deep characterization of T cells in blood and adipose tissue depots using multicolor flow cytometry and RNA sequencing. We identified distinct subsets of T cells associated with obesity expressing the activation markers, CD26 and CCR5, and obesity-specific genes that are potentially engaged in activating pro-inflammatory pathway, including ceramide signaling, autophagy, and IL-6 signaling. These findings increase our knowledge on the heterogeneity of T cells in adipose tissue and on subsets that may play a role in obesity-related pathogenesis.


Assuntos
Tecido Adiposo , Inflamação , Resistência à Insulina , Obesidade , Subpopulações de Linfócitos T , Humanos , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Autofagia/imunologia , Ceramidas/imunologia , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Obesidade/sangue , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
7.
Small ; : e2403512, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011973

RESUMO

As sustainable and eco-friendly replacements to conventional paper, rewritable paper is a very attractive alternative for communication, information circulation, and storage. Development is made for rewritable paper using chromogenic materials that change its color in presence of external stimuli. However, the new techniques have faced several major challenges including feasible operational method, eco-friendly approach. Herein, a simple, convenient, and eco-friendly strategy is described for the preparation of rewritable paper substrate, and multi colored ink for efficient use in writing, painting or printing purpose. In addition, writing with "invisible ink" on the rewritable paper can be realized for potential anti-counterfeiting application. The written, painted, or printed information on the paper substrate can be easily erased using an aqueous solution. Thus, the original paper can be retrieved and the paper substrate can be reused multiple times. Besides, the written or printed information can be retained for a prolonged time at ambient conditions. Overall, this approach shows the rewritable paper as a prototype of multicolor writing/painting application, offering a sustainable solution for reducing paper waste and promoting environmental stewardship.

8.
Small ; : e2404309, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246186

RESUMO

Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min per µ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.

9.
Small ; 20(4): e2305251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718454

RESUMO

Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.

10.
Small ; 20(23): e2308457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38126697

RESUMO

Hour-level persistent room temperature phosphorescence (RTP) phenomena based on multi-confinement carbon dots (CDs) are reported. The CDs-based system reported here (named Si-CDs@B2O3) can be efficiently synthesized by a simple pyrolysis method compared to the established persistent RTP systems. The binding modes of CDs, silica (SiO2), and boron oxide (B2O3) are deduced from a series of characterizations including XRD, FT-IR, and TEM characterization. Further studies show that the formation of covalent bonds between B2O3, SiO2, and CDs play a key role in activating the persistent RTP and preventing its quenching. This is a rare example of a persistent RTP system that exhibits hourly persistent RTP under environmental conditions. Finally, the applications of Si-CDs@B2O3 are demonstrated for anti-counterfeiting, long-duration phosphorescence imaging, and fingerprinting. This synthetic strategy is expected to provide strong technical support for the preparation of persistent RTP CDs and pave the way for the synthesis of persistent RTP CDs in the future.

11.
Small ; 20(23): e2310962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149522

RESUMO

Photoreversible color switching systems (PCSSs) exhibiting multi-color responses to visible light are favored for sustainable societal development over those relying on ultraviolet light due to safer operation and better penetration depth. Here, a PCSS capable of multi-color switching responsive to visible light based on highly photoreductive rutile-phase Sn-doped TiO2-x nanoparticles is reported. The Sn-doping significantly red-shifts the absorption band of the nanoparticles to the visible region, improving charge separation and transfer efficiencies and introducing Ti3+ species and oxygen vacancies as internal sacrificial electron donors for scavenging photogenerated holes. The resulting Sn-doped TiO2-x nanoparticles feature exceptional photoreduction ability and activity, thereby enabling photoreversible color switching of various redox dyes operational under visible light illumination. Furthermore, multi-color switching can be achieved via the color overlay effect by combining different redox dyes in one system, opening the door to many advanced applications, as demonstrated in their successful uses for developing visible-light-driven rewritable multi-color light-printing systems and visual information displays.

12.
Small ; 20(15): e2305083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009483

RESUMO

Zero-dimensional (0D) organic metal halides comprising heterogeneous metal cations in single phase can achieve multiple luminous emissions enabling them toward multifunctional light-emitting applications. Herein, A novel single crystal of (C8H20N)4SbMnCl9 containing two luminescent centers of [SbCl5]2- pentahedrons and [MnCl4]2- tetrahedrons is reported. The large distance between Sb-Sb, Mn-Mn, and Sb-Mn as well as theory calculation indicate negligible interaction between individual centers, thus endowing (C8H20N)4SbMnCl9 with excitation-dependable and efficient luminescence. Under near-UV excitation, only orange emission originates from self-trapped excitons recombination in [SbCl5]2- pentahedron occurs with photoluminescence quantum yield (PLQY) of 91.5%. Under blue-light excitation, only green emission originating from 4T1-6A1 transition of Mn2+ in [MnCl4]2- tetrahedrons occurs with PLQY of 66.8%. Interestingly, upon X-ray illumination, both emissions can be fully achieved due to the high-energy photon absorption. Consequently, (C8H20N)4SbMnCl9 is employed as phosphors to fabricate white light-emitting diodes optically pumped by n-UV chip and blue-chip thanks to its excitation-dependable property. Moreover, it also shows promising performance as X-ray scintillator with low detection limit of 60.79 nGyair S-1, steady-state light yield ≈54% of commerical scintillaotr LuAG:Ce, high resolution of 13.5 lp mm-1 for X-ray imaging. This work presents a new structural design to fabricate 0D hybrids with multicolor emissions.

13.
Chemistry ; 30(47): e202401755, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39031564

RESUMO

The spatially resolvable multicolored microrods have potential applications in many fields. However, achieving spatially resolved multicolor luminescence tuning on the microrod with a fixed composition remains a daunting challenge. Herein, a strategy is proposed that allows for the tuning of spatially resolved, multicolored upconversion (UC) luminescence (UCL) along a 1D heterogeneous microrod by modifying the pulse width of an external laser. NaYbF4:1 % Ho is identified as an UCL color-adjustable material, exhibiting pulse width-dependent multicolored UCL, resulting in a significant regulation of the red/green (R/G) ratio from 0.1 to 10.3 as the pulse width is varied from 0.1 to 10 ms. Such variability can be ascribed to differences in the number of photons incident upon the microrod throughout the period necessary for the UC process to occur. Additionally, NaYbF4:1 %Tm and NaYF4:20 %Yb,1 %Ho are employed as materials that emit blue and green light, respectively, with their UCL colors largely unaffected by changes in the pulse width. Subsequently, a tip-modified epitaxial growth method is utilized to integrate both UCL color-adjustable and non-adjustable segments within the same microrod. Comparing with single-color or fixed multicolor microrods, our developed multisegmented emissive color adjustable 1D heterogeneous microrods have unique optical characteristics and can carry more optical information.

14.
Chemistry ; : e202402287, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119858

RESUMO

The fluorophores, the fluorescence of which can be switched between multi bright colors in the solid state, show promising applications not only in the sophisticated multicolor display but also in the advanced encryption and anti-counterfeiting systems. However, it is very challenging to obtain such fluorophores. Herein, we disclose such an example, g-BPhANMe2-Cp, which contains an electron-donating dimethylamino (NMe2) and an electron-accepting [(2-dimesitylboryl)phenyl]acetyl at the pseudo-gem position of [2.2]paracyclophane skeleton. This molecule can display tricolor mechanochromic luminescence (MCL) due to the different responses of the mechanically ground amorphous state to heating and solvent-fuming. Owing to the absence of intermolecular π-π interactions in the solid state, the fluorescence efficiency is very high irrespective of its morphological state (ΦF=0.60-0.87). Moreover, this molecule also displays reversible acidochromic luminescence (ACL) by protonation and deprotonation of NMe2 with trifluoroacetic acid (TFA) and triethylamine (TEA), respectively. The protonated sample fluoresces (ΦF=0.31) at much shorter wavelength due to the interruption of intramolecular charge transfer process. Therefore, with the combination of tricolor MCL and ACL properties, the solid-state emission of g-BPhANMe2-Cp can be switched among four bright fluorescence colors of yellow, green, cyan and blue via treatment with appropriate stimulus.

15.
Cancer Control ; 31: 10732748241251580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712609

RESUMO

BACKGROUND: Immune-based therapies are commonly employed to combat hepatocellular carcinoma (HCC). However, the presence of immune-regulating elements, especially regulatory T cells (Tregs), can dramatically impact the treatment efficacy. A deeper examination of the immune-regulation mechanisms linked to these inhibitory factors and their impact on HCC patient outcomes is warranted. METHODS: We employed multicolor fluorescence immunohistochemistry (mIHC) to stain Foxp3, cytokeratin, and nuclei on an HCC tissue microarray (TMA). Leveraging liver cancer transcriptome data from TCGA, we built a prognostic model focused on Treg-associated gene sets and represented it with a nomogram. We then sourced liver cancer single-cell RNA sequencing data (GSE140228) from the GEO database, selectively focusing on Treg subsets, and conducted further analyses, including cell-to-cell communication and pseudo-time trajectory examination. RESULTS: Our mIHC results revealed a more substantial presence of Foxp3+Tregs in HCC samples than in adjacent normal tissue samples (P < .001). An increased presence of Foxp3+Tregs in HCC samples correlated with unfavorable patient outcomes (HR = 1.722, 95% CI:1.023-2.899, P = .041). The multi-factorial prognosis model we built from TCGA liver cancer data highlighted Tregs as a standalone risk determinant for predicting outcomes (HR = 3.84, 95% CI:2.52-5.83, P < .001). Re-analyzing the scRNA-seq dataset (GSE140228) showcased distinctive gene expression patterns in Tregs from varying tissues. Interactions between Tregs and other CD4+T cell types were predominantly governed by the CXCL13/CXCR3 signaling pathway. Communication pathways between Tregs and macrophages primarily involved MIF-CD74/CXCR4, LGALS9/CD45, and PTPRC/MRC1. Additionally, macrophages could influence Tregs via HLA-class II and CD4 interactions. CONCLUSION: An elevated presence of Tregs in HCC samples correlated with negative patient outcomes. Elucidating the interplay between Tregs and other immune cells in HCC could provide insights into the modulatory role of Tregs within HCC tissues.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfócitos T Reguladores , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Linfócitos T Reguladores/imunologia , Prognóstico , Fatores de Transcrição Forkhead/metabolismo , Masculino , Feminino
16.
EMBO Rep ; 23(4): e53691, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35201651

RESUMO

Uncovering the functions of genes in a complex biological process is fundamental for systems biology. However, currently there is no simple and reliable experimental tool available to conduct loss-of-function experiments for multiple genes in every possible combination in a single experiment, which is vital for parsing the interactive role of multiple genes in a given phenotype. In this study, we develop miR-AB, a new microRNA-based shRNA (shRNAmir) backbone for simplified, cost-effective, and error-proof production of shRNAmirs. After verification of its potent RNAi efficiency in vitro and in vivo, miR-AB was integrated into a viral toolkit containing multiple eukaryotic promoters to enable its application in diverse cell types. We further engineer eight fluorescent proteins emitting wavelengths across the entire visible spectrum into this toolkit and use it to set up a multicolor-barcoded multiplex RNAi assay where multiple genes are strongly and reliably silenced both individually and combinatorially at a single-cell level.


Assuntos
MicroRNAs , Vetores Genéticos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
Macromol Rapid Commun ; 45(5): e2300592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37956231

RESUMO

Bright and colorful fluorescent polymers are ideal materials for a variety of applications. Although polymers could be made fluorescent by physical doping or chemical binding of fluorescent units, it is a great challenge to get colorful and highly emissive polymers with a single fluorophore. Here the development of a general and facile method to synthesize ultrabright and colorful polymers using a single twisted intramolecular charge transfer (TICT) probe is reported. By incorporating polymerizable, highly fluorescent, and environmental sensitive TICT probe, a series of colorful acrylic polymers (emission from 481 to 543 nm) with almost 100% fluorescence quantum yields are prepared. Like the solvatochromic effect, functional groups within side chains of acrylic polymers (including alkyl chain, tetrahydrofurfuryl group, and hydroxyl group) provide varied environmental polarity for the incorporated fluorophore, resulting in a series of colorful polymeric materials. Benefiting from the excellent photophysical properties, the polymers show great potential in encryption, cultural relics protection, white light-emitting diode bulb making, and fingerprint identification.


Assuntos
Corantes Fluorescentes , Polímeros , Fluorescência , Corantes Fluorescentes/química
18.
Luminescence ; 39(8): e4852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108144

RESUMO

In this paper, nitrogen-doped carbon quantum dots (N-CQDs) are synthesized by the hydrothermal method. N-CQDs exhibit strong fluorescence, and N-CQDs are well dispersed in water as well as in various organic solvents. N-CQDs emit multi-color fluorescence from blue to red, with wavelengths in the range of 450-650 nm without the need for purification. Furthermore, the fluorescence emission of N-CQDs was selectively quenched after adding Fe3+ ions. N-CQDs were used as a nanoprobe for the detection of Fe3+ ions, showing a good linear correlation between the fluorescence emission and the concentration of Fe3+ in the Fe3+ concentration range from 0 to 100 µM. The limit of detection (LOD) was 55.7 µM for Fe3+ in water and 40.2 µM in fetal bovine serum (FBS) samples. The study shows that the synthesized N-CQDs have low cost and great potential for application in biological analysis.


Assuntos
Carbono , Ferro , Nitrogênio , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nitrogênio/química , Ferro/análise , Ferro/química , Animais , Bovinos , Espectrometria de Fluorescência , Íons/análise , Limite de Detecção , Fluorescência , Cor
19.
Mikrochim Acta ; 191(9): 538, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145785

RESUMO

Six biomass carbon dots (BCDs) with adjustable emission from 450 to 680 nm under a single wavelength excitation were successfully synthesized from spinach via solvent control strategy. The obtained BCDs show blue, green, yellow, violet, pink, and red emission with high photoluminescence quantum yield (PLQY = 12.68 ~ 30.77%). Detailed characterizations disclose that the tunable-emission mechanism is caused by the synergistic effect of carbon conjugate and surface oxidation degree. Meanwhile, full-color photoluminescence BCDs/PVP powder and BCDs/PVP/PVA films were fabricated by utilizing the prepared BCDs combined with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), respectively, which presented excellent high-level information encryption application. Importantly, multi-color and white light-emitting diode (LED) with Commission Internationale de L' Eclairage (CIE) of blue (0.25, 0.29); green (0.25, 0.31); yellow (0.42, 0.45); red (0.52, 0.31); and white (0.32, 0.31) were achieved by only using our prepared BCDs. This work provides a valuable strategy of preparing multi-color BCDs using readily available biomass materials and paves a way for high-level information encryption and LED applications.

20.
Nano Lett ; 23(18): 8794-8800, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37487142

RESUMO

Carbon dots (CDs) are promising nanomaterials for next-generation lighting and displays due to their tunable bandgap, high photoluminescence quantum yield (PLQY), and high stability. However, the exciton utilization efficiency (EUE) of CD-based films can only reach 25%, fundamentally limiting their application in electroluminescent light-emitting diodes (LEDs). Improving the EUE is therefore of great significance. Herein, we developed composite films containing CDs and poly(9-vinylcarbazole) (PVK). The films were then used to construct a series of high-performance electroluminescent LEDs with tunable emission colors covering the blue to green regions as the concentration of CDs in the films increased, delivering a maximum external quantum efficiency and current efficiency of 2.62% and 5.11 cd/A, respectively. Theoretical calculations and experiments established that the excellent performance at low film PLQY was due to a hot exciton effect in the CDs, achieving nearly 100% EUE. This work provides new design strategies toward high-performance CD-based electroluminescent LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA