RESUMO
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
RESUMO
Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.
Assuntos
Algoritmos , Astragalus propinquus , Benchmarking , CarbamatosRESUMO
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Assuntos
Poliubiquitina , Ubiquitina , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Ligantes , Ubiquitinação , Sítios de LigaçãoRESUMO
The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid-liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox-Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates.
RESUMO
The bronze goose-and-fish lamp exhibited in the national museum of China is a 2,000-y-old artifact once used for indoor lighting by nobility in the Western Han dynasty (206 BCE TO 25 CE). The beauty of this national treasure arises from its elegant shape vividly showing a goose catching fish with beautiful colors painted over the whole body. Beyond the artistic and historical value, what enchants people most is the eco-design concept of this oil-burning lamp. It is widely believed that the smoke generated by burning animal oil can flow into the goose belly through its long neck, then be absorbed by prefilled water in the belly, hence mitigating indoor air pollution. Although different mechanistic hypotheses such as natural convection and even the siphon effect have been proposed to qualitatively rationalize the above-claimed pollution mitigation function, due to the absence of a true scientific analysis, the definitive mechanism remains a mystery. By rigorous modeling of the nonisothermal fluid flow coupled with convection-diffusion of pollutant within and out of the lamp, we discover that it is the unnoticeable gap between goose body and lamp tray (i.e., an intrinsic feature of the multicompartmental design) that can offer definitive ventilation in the lamp. The ventilation is facilitated by natural convection due to oil burning. Adequate ventilation plays a key role in enabling pollution mitigation, as it allows pollutant to reach the goose belly, travel over and be absorbed by the water.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Fumaça , Ventilação , Poluentes Atmosféricos/história , Poluição do Ar em Ambientes Fechados/história , Poluição do Ar em Ambientes Fechados/prevenção & controle , China , Desenho de Equipamento , História Antiga , Fumaça/prevenção & controle , ÁguaRESUMO
SignificanceThe shape and dynamics of small sessile droplets are dictated by capillary forces. For liquid mixtures, evaporation adds spatio-temporal modulation to these forces that can either enhance or inhibit droplet spreading, depending on the direction of the resulting Marangoni flow. This work experimentally and numerically demonstrates the coexistence of two antagonistic Marangoni flows in a ternary mixture. Played against each other, they can choreograph a boomerang-like wetting motion: Droplets initially rapidly spread, then contract into a compact cap shape. While such a behavior has been impossible in wetting scenarios of simple liquids, it enables spread-retract-remove surface processing with the addition of a single small liquid volume, demonstrated here in a surface-cleaning experiment.
RESUMO
Charge-transfer mechanisms in adaptive multicomponent solutions at liquid-solid interfaces with triboelectric probes are crucial for understanding chemistry dynamics. However, liquid-solid charge transfer becomes unpredictable, due to the components or interactions in solutions, restricting its potential application for precise monitoring of liquid environments. This study utilizes triboelectric probes to investigate the charge transfer of chemicals, applying this approach to real-time coolant state monitoring. Analysis of electrical signal dynamics induced by ethylene glycol and its oxidation byproduct, oxalic acid, in ethylene glycol solutions reveals that hydrogen bond and ion adsorption diminishes the efficiency of electron transfer at the liquid-solid interface. These findings promote the engineering of the triboelectric probe that enhances coolant quality with remarkable sensitivity (detection limit: 0.0001%) and a broad freezing point operational range (0 to -49 °C). This work advances the precise control of the charge dynamics and demonstrates the potential of triboelectric probes for interdisciplinary applications.
RESUMO
Altered energy metabolism is an emerging hallmark of cancer and plays a pivotal in cell survival, proliferation, and biosynthesis. In a rapidly proliferating cancer, energy metabolism acts in synergism with epithelial-to-mesenchymal transition (EMT), enabling cancer stemness, dissemination, and metastasis. In this study, an interconnected functional network governing energy metabolism and EMT signaling pathways was targeted through the concurrent inhibition of IR, ITGB1, and CD36 activity. A novel multicomponent MD simulation approach was employed to portray the simultaneous inhibition of IR, ITGB1, and CD36 by a 2:1 combination of Pimozide and Ponatinib. Further, in-vitro studies revealed the synergistic anticancer efficacy of drugs against monolayer as well as tumor spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231). In addition, the combination therapy exerted approximately 40% of the apoptotic population and more than 1.5- to 3-fold reduction in the expression of ITGB1, IR, p-IR, IRS-1, and p-AKT in MCF-7 and MDA-MB-231 cell lines. Moreover, the reduction in fatty acid uptake, lipid droplet accumulation, cancer stemness, and migration properties were also observed. Thus, targeting IR, ITGB1, and CD36 in the interconnected network with the combination of Pimozide and Ponatinib represents a promising therapeutic approach for breast cancer.
Assuntos
Neoplasias da Mama , Antígenos CD36 , Metabolismo Energético , Transição Epitelial-Mesenquimal , Integrina beta1 , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Integrina beta1/metabolismo , Antígenos CD36/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Metabolismo Energético/efeitos dos fármacos , Células MCF-7 , Imidazóis/farmacologia , Piridazinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
A goal of evidence synthesis for trials of complex interventions is to inform the design or implementation of novel versions of complex interventions by predicting expected outcomes with each intervention version. Conventional aggregate data meta-analyses of studies comparing complex interventions have limited ability to provide such information. We argue that evidence synthesis for trials of complex interventions should forgo aspirations of estimating causal effects and instead model the response surface of study results to 1) summarize the available evidence and 2) predict the average outcomes of future studies or in new settings. We illustrate this modeling approach using data from a systematic review of diabetes quality improvement (QI) interventions involving at least 1 of 12 QI strategy components. We specify a series of meta-regression models to assess the association of specific components with the posttreatment outcome mean and compare the results to conventional meta-analysis approaches. Compared with conventional approaches, modeling the response surface of study results can better reflect the associations between intervention components and study characteristics with the posttreatment outcome mean. Modeling study results using a response surface approach offers a useful and feasible goal for evidence synthesis of complex interventions that rely on aggregate data.
RESUMO
Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.
RESUMO
Developing electrocatalysts with excellent activity and stability for water splitting in acidic media remains a formidable challenge due to the sluggish kinetics and severe dissolution. As a solution, a multi-component doped RuO2 prepared through a process of dealloying-annealing is presented. The resulting multi-doped RuO2 possesses a nanoporous structure, ensuring a high utilization efficiency of Ru. Furthermore, the dopants can regulate the electronic structure, causing electron aggregation around unsaturated Ru sites, which mitigates Ru dissolution and significantly enhances the catalytic stability/activity. The representative catalyst (FeCoNiCrTi-RuO2) shows an overpotential of 167 mV at 10 mA cm-2 for oxygen evolution reaction (OER) in 0.5 m H2SO4 solution with a Tafel slope of 53.1 mV dec-1, which is among the highest performance reported. Moreover, it remains stable for over 200 h at a current density of 10 mA cm-2. This work presents a promising approach for improving RuO2-based electrocatalysts, offering a crucial advancement for electrochemical water splitting.
RESUMO
The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.
RESUMO
PURPOSE: Recent work has shown MRI is able to measure and quantify signals of phospholipid membrane-bound protons associated with myelin in the human brain. This work seeks to develop an improved technique for characterizing this brain ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component in vivo accounting for T 1 $$ {\mathrm{T}}_1 $$ weighting. METHODS: Data from ultrashort echo time scans from 16 healthy volunteers with variable flip angles (VFA) were collected and fitted into an advanced regression model to quantify signal fraction, relaxation time, and frequency shift of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component. RESULTS: The fitted components show intra-subject differences of different white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ signal fraction in the corticospinal tracts measured at 0.09 versus 0.06 in other white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ frequency shift in the body of the corpus callosum at - $$ - $$ 1.5 versus - $$ - $$ 2.0 ppm in other white matter structures. CONCLUSION: The significantly different measured components and measured T 1 $$ {\mathrm{T}}_1 $$ relaxation time of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component suggest that this method is picking up novel signals from phospholipid membrane-bound protons.
Assuntos
Encéfalo , Prótons , Humanos , Voluntários Saudáveis , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , FosfolipídeosRESUMO
Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2H2O) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2H2O, T1, ECV, and the relative fraction of the long-T2 component, A2, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2H2O, T1, ECV, A2, and the T2 of the shorter-T2 component, T21, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2H2O and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2H2O and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.
RESUMO
N-Selective carbamoylation reaction of oximes with isocyanates generates nitrones, which undergo 1,3-dipolar cycloaddition with various dipolarophiles to afford diverse isoxazolidines. Notably, combinations of highly electron-rich oxime and highly electron-deficient dipolarophile exhibited high reactivity, with product yields of up to 94 %. The substituent on the isoxazolidine-nitrogen atom could be successfully removed without loss of the cyclic structure. Computational studies have also elucidated the mechanism of the reaction and origin of stereoselectivity.
RESUMO
The [1,2]-Brook rearrangement stands as a potent technique for constructing complex molecules. In this study, we showcase its power in the dearomatization of aromatic N-heterocycles. Through a concise four-step process that integrates lithiation, nucleophilic addition, Brook rearrangement and dearomatization reaction, we demonstrate a versatile strategy for generating diverse non-aromatic N-heterocycles which exhibit ambident reactivities. Various acyl silanes, halo-pyridines, and quinolines have been explored within this context. The synthetic utility of this methodology is demonstrated through the construction of complex architectures.
RESUMO
The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.
Assuntos
Imunoconjugados , Proteínas , Proteínas/química , Lisina/química , Aminoácidos , Anticorpos , Fenômenos QuímicosRESUMO
We present an Ugi multicomponent approach to explore the chemical space around Aspidosperma-type monoterpene indole alkaloids. By variation of the isocyanide and carboxylic acid inputs we demonstrate the rapid generation of molecular diversity and the possibility to introduce handles for further modification. The key Ugi three-component reaction showed full diastereoselectivity towards the cis-fused ring system, which can be rationalized by DFT calculations that moreover indicate that the reaction proceeds via a Passerini-type hydrogen bonding mechanism. Several post-Ugi modifications were also performed, including Pictet-Spengler cyclization to highly complex nonacyclic natural product hybrid scaffolds.
RESUMO
The Petasis reaction is a multicomponent reaction of aldehydes, amines and organoboron reagents and is a useful method for the construction of substituted amines. Despite the significant advancement of the Petasis reaction since its invention in 1993, strategies for asymmetric and non-directed Petasis reactions remain limited. To date, there are very few catalytic asymmetric Petasis reactions and almost all asymmetric reports employ a chiral auxiliary. Likewise, the aldehyde component often requires a directing group, ultimately limiting the reaction's scope. In this Concept, key methods for asymmetric and non-directed Petasis reactions are discussed, focusing on how these conceptual advances can be applied to solve long-standing gaps in the Petasis literature.
RESUMO
This study explores the energetic stability and physical prop-This study explores the energetic stability and physical properties of Ps2XY complexes formed by two halide anions (X-,Y-=F-,X-,Br-), and two positrons (Ps:positron-electron pair). We combine electronic coupled cluster (CCSD(T)) calculations with positronic multicomponent renormalized partial third-order propagator (MC-REN-PP3) calculations to effectively recover correlation energies. Analysis of potential energy curves confirms the energetic stability of these positronic molecules, with optimized structures identified as global minima. Further investigation of electron and positron densities reveals stabilization owing to the formation of two-positron bonds. The global stability of the Ps2XY complexes contrasts with the metastable two-positron-bonded (PsH)2, which energetically favors the emission of Ps2. Comparative analysis of one- and two-positron dihalides indicates that adding a positron to PsXY- generally results in shorter bond distances, higher force constants, and lower dissociation energies, with exceptions due to differences in positron affinities of PsXY- and Y-. We explore the analogy between two-positron-bonded dihalide systems Ps2XY and two-electron-bonded dialkali molecules AB, (A,B=Na,K,Rb). The bonding properties in positron dihalides and their electronic dialkali analogs display identical periodic trends. However, compared to their isoelectronic AB counterparts, the positron bonds in Ps2XY have shorter bond lengths, higher force constants, and higher bond energies.