Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Small ; 20(13): e2304157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972268

RESUMO

Brillouin light scattering and elastodynamic theory are concurrently used to determine and interpret the hypersonic phonon dispersion relations in brush particle solids as a function of the grafting density with perspectives in optomechanics, heat management, and materials metrology. In the limit of sparse grafting density, the phonon dispersion relations bear similarity to polymer-embedded colloidal assembly structures in which phonon dispersion can be rationalized on the basis of perfect boundary conditions, i.e., isotropic stiffness transitions across the particle interface. In contrast, for dense brush assemblies, more complex dispersion characteristics are observed that imply anisotropic stiffness transition across the particle/polymer interface. This provides direct experimental validation of phonon propagation changes associated with chain conformational transitions in dense particle brush materials. A scaling relation between interface tangential stiffness and crowding of polymer tethers is derived that provides a guideline for chemists to design brush particle materials with tailored phononic dispersion characteristics. The results emphasize the role of interfaces in composite materials systems. Given the fundamental relevance of phonon dispersion to material properties such as thermal transport or mechanical properties, it is also envisioned that the results will spur the development of novel functional hybrid materials.

2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472972

RESUMO

Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird (Sialia currucoides) in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.

3.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475130

RESUMO

Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.

4.
Philos Trans A Math Phys Eng Sci ; 380(2231): 20210399, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35858090

RESUMO

Metasurfaces formed of arrays of subwavelength resonators are often tuned to 'critically couple' with incident radiation, so that at resonance dissipative and radiative damping are balanced and absorption is maximized. Such design criteria are typically derived assuming an infinite metasurface, whereas the absorption characteristics of finite metasurfaces, even very large ones, can be markedly different in certain frequency intervals. This is due to the excitation of surface waves, intrinsic to resonant metasurfaces and especially meta-resonances, namely collective resonances where the surface waves form standing-wave patterns over the planar metasurface domain. We illustrate this issue using a detailed model of a Helmholtz-type acoustic metasurface formed of cavity-neck pairs embedded into a rigid substrate, with geometric and dissipation effects included from first principles (R. Brandão and O. Schnitzer, Wave Motion, 97, 102583, 2020). This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.

5.
Microsc Microanal ; : 1-13, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35343421

RESUMO

Energy-filtering transmission electron microscopy (TEM) and bright-field TEM can be used to extract local sample thickness $t$ and to generate two-dimensional sample thickness maps. Electron tomography can be used to accurately verify the local $t$. The relations of log-ratio of zero-loss filtered energy-filtering TEM beam intensity ($I_{{\rm ZLP}}$) and unfiltered beam intensity ($I_{\rm u}$) versus sample thickness $t$ were measured for five values of collection angle in a microscope equipped with an energy filter. Furthermore, log-ratio of the incident (primary) beam intensity ($I_{\rm p}$) and the transmitted beam $I_{{\rm tr}}$ versus $t$ in bright-field TEM was measured utilizing a camera before the energy filter. The measurements were performed on a multilayer sample containing eight materials and thickness $t$ up to 800 nm. Local thickness $t$ was verified by electron tomography. The following results are reported:• The maximum thickness $t_{{\rm max}}$ yielding a linear relation of log-ratio, $\ln ( {I_{\rm u}}/{I_{{\rm ZLP}}})$ and $\ln ( {I_{\rm p}}/{I_{{\rm tr}}} )$, versus $t$.• Inelastic mean free path ($\lambda _{{\rm in}}$) for five values of collection angle.• Total mean free path ($\lambda _{{\rm total}}$) of electrons excluded by an angle-limiting aperture.• $\lambda _{{\rm in}}$ and $\lambda _{{\rm total}}$ are evaluated for the eight materials with atomic number from $\approx$10 to 79.The results can be utilized as a guide for upper limit of $t$ evaluation in energy-filtering TEM and bright-field TEM and for optimizing electron tomography experiments.

6.
Lasers Med Sci ; 36(1): 43-54, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32277407

RESUMO

The detection and reconstruction of the optical properties within turbid slabs/plate parallel mediums have been widely investigated for its applications in medical diagnosis, atmosphere detection, etc., where the scattering of light would be expected. Although the scattering signal can be utilized for diagnostics purposes, the multiple scattering in the intermediate scattering regime (with an optical depth ~ 2-9) has posed a remarkable challenge. Existing optical tomography methods usually only reconstruct the reduced scattering coefficient to investigate the properties of the scattering target, while reconstruction efforts in analyzing the exact scattering phase function are rare. Solving such issues can provide much more information for proper interpretation of the characteristics of the turbid slab. This work demonstrates an inversion method based on optimization algorithms and the angular distribution of the transmitted light at the entrance plane and the exit plane of the sought medium. Candidate phase functions were pre-calculated and the optimization algorithm is able to reconstruct the phase function spatial distribution of the turbid slab with a satisfactory computational cost. Parametric studies were also performed to analyze the performance of each optimization algorithm used and the sensitivity of this Markov reconstruction scheme to noise.


Assuntos
Algoritmos , Análise Numérica Assistida por Computador , Tomografia Óptica , Simulação por Computador , Cadeias de Markov , Probabilidade
7.
Sensors (Basel) ; 21(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34695916

RESUMO

Microscopic structural rearrangements in expanding polylactide foams were probed using multiple dynamic scattering of laser radiation in the foam volume. Formation and subsequent expansion of polylactide foams was provided by a rapid or slow depressurization of the "plasticized polylactide-supercritical carbon dioxide" system. Dynamic speckles induced by a multiple scattering of laser radiation in the expanding foam were analyzed using the stacked speckle history technique, which is based on a joint mapping of spatial-temporal dynamics of evolving speckle patterns. A significant decrease in the depressurization rate in the case of transition from a rapid to slow foaming (from 0.03 MPa/s to 0.006 MPa/s) causes dramatic changes in the texture of the synthesized stacked speckle history maps. These changes are associated with transition from the boiling dynamics of time-varying speckles to their pronounced translational motions and are manifested as significant slopes of individual speckle traces on the recovered stacked speckle history maps. This feature is interpreted in terms of the actual absence of a new cell nucleation effect in the expanding foam upon slow depressurization on the dynamic scattering of laser radiation.


Assuntos
Lasers , Polímeros
8.
Ultrason Imaging ; 42(1): 41-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937210

RESUMO

Ultrasonic coda wave analysis techniques localize defects in fields such as seismography and nondestructive testing. In medical ultrasound, these techniques might provide novel mapping of tissue properties in diseases characterized by local fibrosis. In this work, we present an approach for localizing variation in scattering properties in the diffuse regime with an array transducer in medical ultrasound. This approach estimates coda wave decorrelation as the array is displaced by 0.5 mm, allowing data acquisition at two slightly different spatial locations. An inverse problem is solved as in nondestructive testing based on coda wave decorrelation estimates and a locally-estimated diffusion constant. The developed approach is demonstrated in a tissue-mimicking phantom to assess sensitivity to variation in scattering properties. Next, the ability of the approach for localizing regions of increased multiple scattering in biological tissues is assessed with a large multiple scattering bead in an ex vivo porcine cardiac sample. Through these experiments, the ability to map variation in multiple scattering is demonstrated for the first time, with a mean localization error of 1.42 ± 3.5 mm for this low-resolution mapping technique. While the goal of this technique is to map defects in the diffuse regime rather than to develop a conventional image, contrast ratios in the resulting images were in good agreement with scattering concentrations in phantom studies: 1.98 ± 0.05 for a 2× scattering target, 1.37 ± 0.02 for a 1.4× scattering target, 0.65 ± 0.02 for a 0.7× scattering target, and 0.49 ± 0.03 for a 0.5× scattering targets.


Assuntos
Coração/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Animais , Modelos Animais , Movimento (Física) , Imagens de Fantasmas , Suínos , Transdutores
9.
Sensors (Basel) ; 20(9)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375216

RESUMO

In a smoke environment, suspended particles can scatter and absorb laser photons, making target echo signals extremely weak and difficult to extract and identify, which causes obvious difficulty in fixed-distance of laser fuze. In this paper, the multiple scattering model of frequency-modulated-continuous-wave (FMCW) laser fuze in a smoke environment was established. This model simulates multi-path propagation and multiple scattering of photons. At the same time, we use the correntropy spectral density (CSD) algorithm for accurate fixed-distance of FMCW laser fuze. The absolute error of distance does not exceed 0.15 m in smoke interference environment.

10.
Sci Technol Adv Mater ; 20(1): 379-387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105802

RESUMO

We have studied P adsorption on Ni(111), a system which shows complex adsorbate structures. We determined the phase diagram of the surface P adsorbed on Ni(111). At low coverage, amorphous P was observed. At temperatures between 373 and 673 K and coverages above 0.1 monolayer, we found a 7 × 7   R 19.1 ∘ structure, but above 673 K, other complex structures were created. These structures seemed to correlate with each other and we reinterpret a 7 × 7   R 19.1 ∘ structure of P adsorbed on Ni(111) based on the similarities of these surface structures. The new rectangular structure for the 7 × 7   19.1 ∘ is discussed in relation to the Ni2P local structure.

11.
Small ; 14(46): e1801548, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30070021

RESUMO

This work represents a critical re-examination of the application of dynamic light scattering (DLS)-based tracer particle microrheology to measure the zero shear viscosity of aqueous solutions of different proteins up to very high concentrations. It is demonstrated that a combination of surface-functionalized tracer particles, the use of the so-called 3D-DLS technique, and carefully chosen parameters for the scattering experiments is essential for a reliable and artifact-free determination of the viscosity of highly diverse protein solutions, while keeping the amount of protein to a minimum. The major challenges that arise in such microrheology experiments with protein solutions are discussed and used as guiding principles for the synthesis of all-purpose tracer particles with optimal size and an efficient surface functionalization, and the choice of the appropriate amount of tracers in the sample. Potential problems arising from depletion attractions between the tracer particles induced by the proteins are addressed, and compelling evidences for the absence of such effects are presented. The validity of the approach is corroborated by the perfect agreement between the zero shear viscosity obtained from 3D-DLS-based microrheology and literature data from classical rheological measurements for two vastly different protein-solvent systems up to concentrations close to the arrest transition.


Assuntos
Nanopartículas/química , Proteínas/química , Reologia/métodos , Difusão Dinâmica da Luz , Viscosidade
12.
J Synchrotron Radiat ; 25(Pt 2): 523-528, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488932

RESUMO

X-ray absorption spectra calculated within an effective one-electron approach have to be broadened to account for the finite lifetime of the core hole. For methods based on Green's function this can be achieved either by adding a small imaginary part to the energy or by convoluting the spectra on the real axis with a Lorentzian. By analyzing the Fe K- and L2,3-edge spectra it is demonstrated that these procedures lead to identical results only for energies higher than a few core-level widths above the absorption edge. For energies close to the edge, spurious spectral features may appear if too much weight is put on broadening via the imaginary energy component. Special care should be taken for dichroic spectra at edges which comprise several exchange-split core levels, such as the L3-edge of 3d transition metals.

13.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530543

RESUMO

A multi-wire proportional chamber-based muo- graphy observatory is under development for the monitoring of the internal structure of Mt Sakurajima in Kyushu, Japan. We investigated the limits of large-scale and high-definition muography. We adjusted the parameters of a modified Gaisser model and found that the spectral index of γ = - 2.64 and normalization factor of C = 0.66 reproduce more accurately the measured fluxes than the original parameters at large thickness. A thickness and zenith angle-dependent correction is suggested to the measured muon flux due to the energy cut which is introduced to suppress the background particles. The multiple scattering of muons was simulated across the standard rock and sea-level atmosphere up to the distance of 5 km. We found that multiple scattering decreases from 10 mrad to 4 mrad across the rock due to the decrease in the steepness of muon spectra. The multiple scattering falls down to about 2 mrad after the object in the atmosphere due to the increase in observed arrival zenith angles. The 2 m2 sized multi-wire proportional chamber-based Muographic Observation System (MMOS) was operating between February and June 2018. Three tracking systems operated reliably with tracking efficiencies of above 95%. The muon flux has been measured correctly down to 10-3 m-2 sr-1 s-1 The average density map of Mt Sakurajima has been measured with angular resolution of 12 mrad × 12 mrad (spatial resolution of 34 m × 34 m from the distance of 2.8 km). The average density values were found between 1.4 and 2 g cm-3, except at the crater regions where lower densities were observed.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

14.
Microsc Microanal ; 24(1): 8-16, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485023

RESUMO

The spatial resolution of aberration-corrected annular dark field scanning transmission electron microscopy was studied as function of the vertical position z within a sample. The samples consisted of gold nanoparticles (AuNPs) positioned in different horizontal layers within aluminum matrices of 0.6 and 1.0 µm thickness. The highest resolution was achieved in the top layer, whereas the resolution was reduced by beam broadening for AuNPs deeper in the sample. To examine the influence of the beam broadening, the intensity profiles of line scans over nanoparticles at a certain vertical location were analyzed. The experimental data were compared with Monte Carlo simulations that accurately matched the data. The spatial resolution was also calculated using three different theoretical models of the beam blurring as function of the vertical position within the sample. One model considered beam blurring to occur as a single scattering event but was found to be inaccurate for larger depths of the AuNPs in the sample. Two models were adapted and evaluated that include estimates for multiple scattering, and these described the data with sufficient accuracy to be able to predict the resolution. The beam broadening depended on z 1.5 in all three models.

15.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446691

RESUMO

Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Luz , Animais , Ecologia , Fenômenos Ópticos , Simbiose
16.
J Synchrotron Radiat ; 24(Pt 6): 1173-1179, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091060

RESUMO

A theory program intended for use with extended X-ray-absorption fine structure (EXAFS) spectroscopy and based on the popular FEFF8 is presented. It provides an application programming interface designed to make it easy to integrate high-quality theory into EXAFS analysis software. This new code is then used to examine the impact of self-consistent scattering potentials on EXAFS data analysis by methodical testing of theoretical fitting standards against a curated suite of measured EXAFS data. For each data set, the results of a fit are compared using a well characterized structural model and theoretical fitting standards computed both with and without self-consistent potentials. It is demonstrated that the use of self-consistent potentials has scant impact on the results of the EXAFS analysis.

17.
J Synchrotron Radiat ; 23(Pt 6): 1433-1439, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787249

RESUMO

Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat)2CuCl4] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

18.
J Synchrotron Radiat ; 23(Pt 3): 758-68, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140156

RESUMO

Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3-edge X-ray absorption near-edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U-Oax)(2) - 38.5 (for the axial plane) and ΔE2 = 428.4/R(U-Oeq)(2) - 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3-edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X-ray absorption fine-structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl-ligand complexes, such as the uranyl-carbonate complex. Most importantly, the XANES research method could be extended to low-concentration uranyl systems, as indicated by the results of the uranyl-amidoximate complex (∼40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.

19.
J Synchrotron Radiat ; 23(1): 244-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698070

RESUMO

The first results of multiple scattering simulations of polarized high-energy X-rays for Compton experiments using a new Monte Carlo program, MUSCAT, are presented. The program is developed to follow the restrictions of real experimental geometries. The new simulation algorithm uses not only well known photon splitting and interaction forcing methods but it is also upgraded with the new propagation separation method and highly vectorized. In this paper, a detailed description of the new simulation algorithm is given. The code is verified by comparison with the previous experimental and simulation results by the ESRF group and new restricted geometry experiments carried out at SPring-8.

20.
J Synchrotron Radiat ; 23(Pt 4): 947-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359143

RESUMO

A systematic study is presented on a set of vanadium-bearing model compounds, representative of the most common V coordination geometries and oxidation states, analysed by means of vanadium K-edge X-ray absorption near-edge spectroscopy calculations in the full multiple scattering (FMS) framework. Analysis and calibration of the free parameters of the theory under the muffin-tin approximation (muffin-tin overlap and interstitial potential) have been carried out by fitting the experimental spectra using the MXAN program. The analysis shows a correlation of the fit parameters with the V coordination geometry and oxidation state. By making use of this correlation it is possible to approach the study of unknown V-bearing compounds with useful preliminary information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA