Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197282

RESUMO

Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5'-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.


Assuntos
Endonucleases Flap/metabolismo , Reação em Cadeia da Polimerase Multiplex/métodos , Taq Polimerase/metabolismo , Deleção Cromossômica , Cromossomos Humanos Y , Primers do DNA , Escherichia coli/genética , Corantes Fluorescentes/química , Humanos , Limite de Detecção
2.
J Infect Dis ; 229(1): 83-94, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37440459

RESUMO

BACKGROUND: Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS: This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS: We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS: These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfopenia , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Adulto , Humanos , Estudos de Coortes , Estudos Retrospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Infecções Respiratórias/tratamento farmacológico , Infecções por Paramyxoviridae/epidemiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Corticosteroides/uso terapêutico
3.
J Clin Microbiol ; 62(3): e0154523, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329337

RESUMO

Acute gastroenteritis (AGE) is a leading cause of morbidity and mortality worldwide across all age groups that disproportionally affects young children in low- and middle-income countries and immunocompromised patients in high-income countries. Regional outbreaks of AGE are typically detected by traditional microbiological detection methods that target limited organisms and are associated with low sensitivity and lengthy time-to-results. Combined, these may result in repeat testing, imprecise or delayed treatment, and delayed recognition of outbreaks. We conducted a multi-site prospective study comparing the BioCode Gastrointestinal Pathogen Panel (BioCode GPP) for the detection of 17 common bacterial, viral, and protozoan causes of gastroenteritis with reference methods, including stool culture, enzyme immunoassays, pathogen-specific PCR assays, and sequencing. One thousand five hundred fifty-eight residual, de-identified stool samples (unpreserved stool and stool in Cary-Blair transport medium) were enrolled and tested for 11 bacterial, 3 viral, and 3 protozoan pathogens. BioCode GPP and reference methods were positive for 392 (25.2%) and 283 (18.2%) samples, respectively (P < 0.0001). In this study, the BioCode GPP and reference methods detected 69 and 65 specimens positive for Clostridioides difficile, 51 and 48 for enteroaggregative Escherichia coli, 33 and 27 for enterotoxigenic E. coli, 50 and 47 for norovirus GI/GII, and 30 and 22 for rotavirus A, respectively. The BioCode GPP showed good positive and negative agreements for each pathogen ranging from 89.5% to 100%, with overall sensitivity and specificity of 96.1% and 99.7%, post adjudication. The BioCode GPP detected >1 pathogens in 49 samples, representing 12.5% of the total 392 positive specimens. IMPORTANCE: This study highlights performance of a novel technology for timely and accurate detection and differentiation of 17 common bacterial, viral, and protozoan causes of gastroenteritis. Utilizing molecular tests such as the BioCode Gastrointestinal Pathogen Panel may improve the detection of gastrointestinal pathogens and provide actionable results, particularly for patient populations at most risk.


Assuntos
Bacteriófagos , Escherichia coli Enterotoxigênica , Gastroenterite , Norovirus , Rotavirus , Humanos , Diarreia/diagnóstico , Fezes/microbiologia , Gastroenterite/diagnóstico , Estudos Prospectivos , Sensibilidade e Especificidade
4.
Electrophoresis ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533931

RESUMO

Multiplex PCR is a critical step when preparing amplicon library for next-generation sequencing. However, there are several challenges related to multiplex PCR including poor uniformity, nonspecific amplification, and primer-dimers. To address these issues, we propose a novel solution strategy that involves using a low cycle number (<10 cycles) in multiplex PCR and then employing carrier DNAs and magnetic beads for the selection of targeted products. This technique improves the amplicon uniformity while also reducing primer-dimers and PCR artifacts. To evaluate our technique, we initially utilized 120 DNA fragments from mouse genome containing single nucleotide polymorphism (SNP) sites. Sequencing results demonstrated that with only 7 cycles of multiplex PCR, 95.8% of the targeted SNP sites were mapped, with a coverage of at least 1×. The average sequencing depth of all amplicons was 1705.79 ± 1205.30×; 87% of them reached a coverage depth that exceeded 0.2-fold of the average sequencing depth. Our method had a greater uniformity (87%) when compared to Hi-Plex PCR (53.3%). Furthermore, we validated our strategy by randomly selecting 90 primer pairs twice from the initial set of 120 primer-pairs. Next, we used the same protocol to prepare amplicon libraries. The two groups had an average sequencing depth of 1013.30 ± 585.57× and 219.10 ± 158.27×, respectively; over 84% of the amplicons had a sequencing depth that exceeded 0.2-fold of average depth. These results suggest that the use of a low cycle number in multiplex PCR is a cost-effective and efficient approach for the preparation of amplicon libraries.

5.
Microb Pathog ; 188: 106561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307371

RESUMO

The emergence of the coronavirus pandemic facilitated the acquisition of mutations in the SARS-CoV-2 genome, resulting in the appearance of new variants over the past three years. We previously identified several taxa associated with the clinical outcome of COVID-19 disease in a retrospective study involving 120 patients (infected patients and negative subjects). However, little is known about whether the different variants could influence variations in the composition of the nasopharyngeal microbiota. In this study, we used multiplex pathogen-specific PCR to analyse the presence of nasopharyngeal bacterial pathogens from 400 SARS-CoV-2 positive patients (equally distributed in the four SARS-CoV-2 variants studied: B.1.1.7 (Alpha), B.1 0.617.2 (Delta), B.1.160 (Marseille-4), and B.1.1.529 (omicron)). We then compared them to 400 patients who tested negative for all respiratory viruses tested in this study, including SARS-CoV-2. We first observed an enrichment of Staphylococcus aureus (P ≤ .05) and Corynebacterium propinquum (P ≤ .05) in COVID-19-positive patients, regardless of the variant, compared to negative subjects. We specifically highlighted a significantly higher frequency of S. aureus (P ≤ .0001), C. propinquum (P ≤ .0001), and Klebsiella pneumoniae (P ≤ .0001), in patients infected with the omicron variant, whereas that of Haemophilus influenzae was higher in patients infected with Marseille-4 (P ≤ .001) and Alpha (P ≤ .01) variants. Our results suggest that the nasopharyngeal bacterial pathogens have their own specificity according to the SARS-CoV-2 variant and independently of the season. Additional studies are needed to determine the role of these pathogens in the evolution of the clinical outcome of patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Staphylococcus aureus
6.
Exp Physiol ; 109(2): 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948104

RESUMO

Chronic obstructive pulmonary disease (COPD) is commonly characterized by shortness of breath, coughing or expectoration. Smoking is the leading cause of COPD development, but only a small percentage of smokers develop symptoms, implying a genetic component. Glutathione S-transferase enzymes are responsible for detoxifying cigarette smoke components. The role of glutathione S-transferase T1 (GSTT1) and glutathione S-transferase M1 (GSTM1) gene polymorphism was assessed with COPD susceptibility and associated clinical parameters in the North Indian population. This was a cross-sectional study involving 200 COPD patients and 200 healthy individuals, with peripheral blood sampling and adequate questionnaires. Multiplex PCR was used for genotyping GSTT1 and GSTM1 gene polymorphism. Logistic regression was used to calculate the odds ratio and 95% confidence intervals to assess the COPD risk and GST polymorphisms. The GSTT1 gene deletion rate was higher in COPD cases (34.5%) than in healthy individuals (20.5%). A statistical relationship between the GSTT1(-) null genotype and COPD risk was observed (odds ratio = 2.04, 95% CI = 1.30-3.20, P = 0.0019). After adjusting for covariates like age, sex and smoking status, a significant association was found for GSTT1(-) null genotype and COPD risk (adjusted odds ratio = 2.90, 95% CI = 1.43-5.87, P = 0.003). The GSTT1(-) genotype was also significantly correlated with clinical parameters for COPD risk. Another primary observation was that females with the GSTT1(-) null genotype were more vulnerable to COPD than males with the same gene deletion. The GSTT1(-) null genotype strongly correlates with COPD development, while no association was observed in the GSTM1(-) null genotype in the North Indian population.


Assuntos
Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica , Masculino , Feminino , Humanos , Estudos Transversais , Polimorfismo Genético/genética , Glutationa Transferase/genética , Genótipo , Biomarcadores , Doença Pulmonar Obstrutiva Crônica/genética , Estudos de Casos e Controles , Fatores de Risco
7.
Artigo em Inglês | MEDLINE | ID: mdl-38834891

RESUMO

PURPOSE: To evaluate the performance of a rapid multiplex microarray-based method (Unyvero BCU system, BCU) to identify microorganisms and detect antimicrobial resistance directly from positive blood culture (BC) bottles with polymicrobial growth, and to assess relevance of information provided for timely guidance of polymicrobial bloodstream infection treatment. METHODS: Accuracy, time-to-actionable results and potential impact of BCU on antimicrobial treatment were compared with those of standard of care during a prospective study for the sample analysis (November 2017-November 2018) and a retrospective study for the clinical data analysis and the time-to-result analysis. The study was complemented with an experimental study, based on spiked blood cultures to assess the ability of the method to detect antimicrobial resistance genes. RESULTS: Sixty-five clinical polymicrobial BC samples (163 total microorganisms) and 30 simulated polymicrobial BC samples (60 strains) were included. BCU reported 84.6% samples as polymicrobial, correctly identified all the bacteria of the mix for 72.3% samples (47/65) and detected bacteria that were missed by the conventional culture for 13.8% samples. All identifications and antimicrobial resistances were accurately detected for 61.5% (40/65) samples. Limitations concerned the detection of anaerobes, enterococci and enterobacterial susceptibility to third generation cephalosporins. BCU results would have guided antimicrobial treatment for 50.8% of the cases (33/65) in a timely and relevant manner, had no impact for 27.7% (18/65) and been misleading for 18.5% (12/65). CONCLUSIONS: Despite some limitations, the Unyvero BCU system is a rapid and reliable method for polymicrobial BC sample analysis.

8.
Eur J Clin Microbiol Infect Dis ; 43(3): 435-443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147237

RESUMO

PURPOSE: The aim of the study was to determine and evaluate the clinical usefulness of pathogen specific semi-quantitative cut-offs in stool samples with multiple pathogen detections. METHODS: The PCR (Seegene Allplex Gastrointestinal Virus Assay) data from 4527 positive samples received over 16 months were retrospectively analyzed to investigate the distribution of the Ct values of each individual viral pathogen. By using interquartile ranges for each viral pathogen, pathogen specific semi-quantitative cut-offs were determined. RESULTS: After a thorough analysis of the Ct values, a well-founded decision to exclude all results with a Ct value higher than 35 was made. This approach made it possible to generate a more nuanced report and to facilitate clinical interpretation in case of mixed infections by linking a lower Ct value of a pathogen to a greater likelihood of being a relevant causative pathogen. Moreover, not reporting viral pathogens with a Ct value higher than 35 led to a significant reduction (p < 0.0001) of reported mixed infections compared to oversimplified qualitative or qualitative reporting. CONCLUSION: By omitting very high Ct values and reporting semi-quantitatively, value was added to the syndromic reports, leading to an easier to read lab report, especially in mixed infections.


Assuntos
Coinfecção , Doenças Transmissíveis , Gastroenteropatias , Vírus , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Gastroenteropatias/diagnóstico , Gastroenteropatias/microbiologia , Vírus/genética , Reação em Cadeia da Polimerase Multiplex/métodos
9.
BMC Infect Dis ; 24(1): 171, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326773

RESUMO

BACKGROUND: Syndromic surveillance of acute gastroenteritis plays a significant role in the diagnosis and management of gastrointestinal infections that are responsible for a substantial number of deaths globally, especially in developing countries. In Lebanon, there is a lack of national surveillance for acute gastroenteritis, and limited data exists regarding the prevalence of pathogens causing diarrhea. The one-year study aims to investigate the epidemiology of common gastrointestinal pathogens and compare our findings with causative agents of diarrhea reported by our study collaborative centers. METHODS: A multicenter, cross-sectional study was conducted over a one-year period. A total of 271 samples were obtained from outpatients and inpatients presenting with symptoms of acute gastroenteritis at various healthcare facilities. The samples were then analyzed using Allplex gastrointestinal assay that identifies a panel of enteric pathogens. RESULTS: Overall, enteropathogens were detected in 71% of the enrolled cases, 46% of those were identified in patients as single and 54% as mixed infections. Bacteria were observed in 48%, parasites in 12% and viruses in 11%. Bacterial infections were the most prevalent in all age groups. Enteroaggregative E. coli (26.5%), Enterotoxigenic E. coli (23.2%) and Enteropathogenic E. coli (20.3%) were the most frequently identified followed by Blastocystis hominis (15.5%) and Rotavirus (7.7%). Highest hospitalization rate occurred with rotavirus (63%), Enterotoxigenic E. coli (50%), Blastocystis hominis (45%) and Enteropathogenic E. coli (43%). Enteric pathogens were prevalent during summer, fall and winter seasons. CONCLUSIONS: The adoption of multiplex real-time PCR assays in the diagnosis of gastrointestinal infections has identified gaps and improved the rates of detection for multiple pathogens. Our findings highlight the importance of conducting comprehensive surveillance to monitor enteric infections. The implementation of a syndromic testing panel can therefore provide healthcare professionals with timely and accurate information for more effective treatment and public health interventions.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Gastroenterite , Rotavirus , Humanos , Reação em Cadeia da Polimerase Multiplex , Estudos Transversais , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Diarreia/diagnóstico , Diarreia/epidemiologia , Diarreia/etiologia , Rotavirus/genética , Fezes/microbiologia
10.
Mycoses ; 67(1): e13686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214363

RESUMO

BACKGROUND: Otomycosis is an infection of the external auditory canal caused by molds and yeasts with descending frequency. Laboratory diagnosis is usually confirmed by microscopy and culture. However, they are not specific enough to reliably differentiate the causative agents, especially for rare pathogens such as Candida auris. The purpose of the current study was to the molecular screening of C. auris species from direct clinical samples of patients with suspected otomycosis in Southern of Iran. MATERIALS AND METHODS: A total of 221 ear aspirates collected from 221 patients with suspected otomycosis over a four-year period. All the ear aspirations were examined with pan-fungal primers, then those with a positive result was included in two separate reaction mixtures simultaneously to identify the most clinically relevant Aspergillus and Candida species. The validity of positive samples for C. auris was assessed by sequencing. RESULTS: Of the 189 pan-fungal positive PCRs, 78 and 39 specimens contained Aspergillus spp. and Candida spp., respectively. Furthermore, 65 specimens showed simultaneous positive bands in both Candida and Aspergillus species-specific multiplex PCR including five samples/patients with positive result for C. auris (5/189; 2.6%). Four out of five cases with C. auris species-specific PCR were reconfirmed by sequencing, while none were positive for C. auris in culture. CONCLUSION: Unfortunately, due to high treatment failure rates of antifungal classes against C. auris species, rapid and accurate identification of patients colonised with C. auris is critical to overcome the challenge of preventing transmission. This PCR assay can be successfully applied for rapid and accurate detection of C. auris directly in patient samples and is able to differentiate C. auris from closely related Candida species.


Assuntos
Otomicose , Humanos , Otomicose/diagnóstico , Otomicose/tratamento farmacológico , Otomicose/microbiologia , Candida auris , Reação em Cadeia da Polimerase Multiplex , Irã (Geográfico)/epidemiologia , Candida/genética , Aspergillus/genética , Antifúngicos/uso terapêutico
11.
J Clin Lab Anal ; 38(9): e25042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775102

RESUMO

BACKGROUND: The current study aimed to identify Iranian Nakaseomyces (Candida) glabrata complex species in the clinical isolates and determine their antifungal susceptibility profile. METHODS: In total, 320 N. glabrata clinical isolates were collected from patients hospitalized in different geographical regions of Iran. The initial screening was performed by morphological characteristics on CHROMagar Candida. Each isolate was identified by targeting the D1/D2 rDNA using a multiplex-PCR method. To validate the mPCR method and determine genetic diversity, the ITS-rDNA region was randomly sequenced in 40 isolates. Additionally, antifungal susceptibility was evaluated against nine antifungal agents following the CLSI M27-A4 guidelines. RESULTS: All clinical isolates from Iran were identified as N. glabrata. The analysis of ITS-rDNA sequence data revealed the presence of eight distinct ITS clades and 10 haplotypes among the 40 isolates of N. glabrata. The predominant clades identified were Clades VII, V, and IV, which respectively accounted for 22.5%, 17.5%, and 17.5% isolates. The widest MIC ranges were observed for voriconazole (0.016-8 µg/mL) and isavuconazole (0.016-2 µg/mL), whereas the narrowest ranges were seen with itraconazole and amphotericin B (0.25-2 µg/mL). CONCLUSION: Haplotype diversity can be a valuable approach for studying the genetic diversity, transmission patterns, and epidemiology of the N. glabrata complex.


Assuntos
Antifúngicos , Candida glabrata , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Humanos , Irã (Geográfico)/epidemiologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Epidemiologia Molecular , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Candidíase/microbiologia , Candidíase/epidemiologia , Farmacorresistência Fúngica/genética
12.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460955

RESUMO

The Acinetobacter calcoaceticus-baumannii (ACB) complex is an often-overlooked group of nosocomial pathogens with a significant environmental presence. Rapid molecular screening methods for virulence, antimicrobial resistance, and toxin (VAT) genes are required to investigate the potential pathogenicity of environmental isolates. This study aimed to develop and apply novel ACB complex-specific multiplex PCR (mPCR) primers and protocols for the rapid detection of eight VAT genes. We optimized three single-tube mPCR assays using reference DNA from ACB complex and other Acinetobacter species. These assays were then applied to detect VAT genes in cultured ACB complex isolates recovered from clinical and environmental sources. Widespread detection of VAT genes in environmental isolates confirmed the validity, functionality, and applicability of these novel assays. Overall, the three newly developed ACB complex species-specific mPCR assays are rapid and simple tools that can be adopted in diagnostic and clinical lab settings. The detection of VAT genes in environmental isolates suggests that environmental niches could serve as a reservoir for potentially pathogenic ACB complex and warrants further investigation. The newly developed mPCR assays are specific, sensitive, and efficient, making them well-suited for high-throughput screening in epidemiological studies and evaluating the potential pathogenicity of ACB complex recovered from various sources.


Assuntos
Acinetobacter baumannii , Acinetobacter calcoaceticus , Toxinas Biológicas , Reação em Cadeia da Polimerase Multiplex/métodos , Virulência/genética , Antibacterianos/farmacologia , Acinetobacter calcoaceticus/genética , Farmacorresistência Bacteriana , Acinetobacter baumannii/genética
13.
Dis Aquat Organ ; 158: 27-36, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661135

RESUMO

Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Doenças dos Peixes , Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Gana/epidemiologia , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Virulência , Antibacterianos/farmacologia , Lagos/microbiologia , Ciclídeos , Aquicultura
14.
J Fish Dis ; 47(1): e13865, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731267

RESUMO

Enteromyxum leei and Enteromyxum fugu, which are myxosporean parasites, were first found in cultured tiger puffer Takifugu rubripes in Korea. We collected four tiger puffers that showed severe emaciation signs for our experiments. DNA sequencing was confirmed that the tiger puffers were coinfected with E. leei and E. fugu. Furthermore, similar amounts of E. leei and E. fugu were confirmed using real-time PCR in the intestine. To the best of our knowledge, there have been no reports of E. fugu infection in the olive flounder Paralichthys olivaceus. However, the diagnosis of inflowing water, discharged water and olive flounder samples using highly sensitive diagnostic methods confirmed the presence of E. fugu in water and fish samples from olive flounder farms near the tiger puffer farm. Therefore, the present study aimed to develop highly sensitive diagnostic methods such as real-time and two-step PCR for early diagnosis and follow-up of the emaciation disease and multiplex PCR for rapid diagnosis. The multiplex PCR method exhibited the same sensitivity as the one-step PCR method developed in this study, demonstrating its efficacy for rapid diagnosis. Therefore, the suggested methods can be utilized for the early diagnosis and rapid diagnosis of emaciation diseases and reduction of economic losses through rapid disease control.


Assuntos
Doenças dos Peixes , Linguado , Myxozoa , Animais , Takifugu , Emaciação , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/parasitologia , Linguado/parasitologia , Myxozoa/genética , República da Coreia , Água
15.
Parasitol Res ; 123(6): 234, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850432

RESUMO

The genus Sarcocystis includes protozoan parasites with an indirect life cycle. Sarcocystis spp. can infect various animal species and humans, causing sarcocystosis, a parasitosis of economic importance and zoonotic concern. Wild boars can act as intermediate hosts for Sarcocystis miescheriana and the zoonotic Sarcocystis suihominis that infects humans by consumption of raw or undercooked infected swine meat. In the present study, the diaphragmatic muscle tissue of 123 wild boars hunted in Greece was examined to determine the frequency of Sarcocystis spp. The samples were examined by tissue compression and molecular techniques. Under light microscopy, 34 out of 123 (27.6%) wild boars tested positive for Sarcocystis spp., while a higher infection prevalence (75%) was revealed by multiplex PCR performed in 100 of the samples. The partial mtDNA cox1 gene (~ 1100 bp) of 20 samples tested positive for S. miescheriana by multiplex PCR was amplified and sequenced. Sarcocystis miescheriana was identified as the only species involved in these infections. This is the first study on the prevalence of Sarcocystis spp. in wild animals in Greece. Further, large-scale surveys are needed to assess the prevalence and species of this parasite in Greece and to design efficient control and preventive measures in a One Health perspective.


Assuntos
Sarcocystis , Sarcocistose , Sus scrofa , Doenças dos Suínos , Animais , Sarcocystis/genética , Sarcocystis/isolamento & purificação , Sarcocystis/classificação , Sarcocistose/veterinária , Sarcocistose/parasitologia , Sarcocistose/epidemiologia , Grécia/epidemiologia , Sus scrofa/parasitologia , Doenças dos Suínos/parasitologia , Doenças dos Suínos/epidemiologia , Suínos , DNA de Protozoário/genética , Microscopia , Prevalência , Análise de Sequência de DNA , DNA Mitocondrial/genética , Reação em Cadeia da Polimerase Multiplex/veterinária , Complexo IV da Cadeia de Transporte de Elétrons/genética , Diafragma/parasitologia
16.
Foodborne Pathog Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568114

RESUMO

Escherichia coli O157:H7 (E. coli O157:H7) and Campylobacter jejuni (C. jejuni) are pathogenic microorganisms that can cause severe clinical symptoms in humans and are associated with bovine meat consumption. Specific monitoring for E. coli O157: H7 or C. jejuni in meat is not mandatory under Chilean regulations. In this study, we analyzed 544 samples for the detection of both microorganisms, obtained from 272 bovine carcasses (280 kg average) at two slaughterhouses in the Bio-Bío District, Chile. Sampling was carried out at post-shower of carcasses and after channel passage through the cold chamber. Eleven samples were found to be positive for E. coli O157:H7 (4.0%) using microbiological and biochemical detection techniques and were subjected to a multiplex PCR to detect fliC and rfbE genes. Six samples (2.2%) were also found to be positive for the pathogenicity genes stx1, stx2, and eaeA. Twenty-two carcasses (8.0%) were found to be positive for C. jejuni using microbiological and biochemical detection techniques, but no sample with amplified mapA gene was found.

17.
Anaerobe ; 88: 102874, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848934

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can misidentify Cutibacterium namnetense and Cutibacterium modestum as Cutibacterium acnes. We now describe how such MALDI-TOF MS misidentification explains previous reports of C. acnes isolates that could not be characterised using a multiplex PCR phylotyping assay.

18.
Exp Appl Acarol ; 92(3): 403-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489086

RESUMO

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Tetranychidae , Animais , Tetranychidae/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Pequim , Complexo IV da Cadeia de Transporte de Elétrons/genética
19.
Pak J Med Sci ; 40(6): 1190-1195, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952530

RESUMO

Objective: This study was aimed to investigate the multidrug resistance patterns in clinical isolates of Escherichia coli and their correlation with integrons and phylogenetic groupings. Methods: A total of 37 clinical E. coli isolates were evaluated for drug resistance patterns by disk diffusion method. Phylogenetic groupings and the presence of integrons among E. coli were determined by multiplex PCR assays. Results: Multidrug resistance was identified in 84% of the clinical isolates of E. coli with higher resistance found against cephalosporins (94.6%) and fluoroquinolones (83.8%), while lower resistance was observed against polymyxins (24.3%) and carbapenems (29.7%). Metallo-ß-lactamases were found in all carbapenem resistant isolates. The phylogenetic group B2 was the most dominant (40.5%), followed by groups A (35.1%), D (13.5%) and B1 (10.8%). Integrons were detected in 25 (67.6%) isolates and intI1, intI2, and intI3 genes were found in 62.2%, 18.9% and 10.8% of isolates respectively. Conclusion: Our results show that phylogenetic classification of E. coli is not relevant with antimicrobial resistance. However, there was strong association between the integron classes and resistance against ß-lactam and fluoroquinolones antimicrobials. Additionally, this study highlighted that the presence of integrons plays a crucial role in the development of multidrug resistance in clinical isolates of E. coli. Most significantly, this is the first report of detection of three classes of integron among clinical isolates of E. coli in Pakistan.

20.
Indian J Microbiol ; 64(1): 186-197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468739

RESUMO

Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhea in developed and industrialized countries in children. EAEC colonizes the human intestine and this ability to form colonies and biofilm is an important step in pathogenesis. Here, we investigated the relationship between known or putative 22 EAEC virulence genes and biofilm formation in isolates derived from acute diarrhea and healthy children and their aggregative adherence (AA) pattern with Hep-2 cell lines. A total of 138 EAEC isolates were recovered from 1210 stool samples from children (age < 10 years) suffering from acute diarrhea and 33 EAEC strains isolated from 550 healthy children (control group) of different Anganwadi centers in Chandigarh region were included. Polymerase chain reaction using the primer pair pCVD432 identified E. coli isolates as EAEC. A total of 22 virulence-related genes have been identified using M-PCR chain reactions. The crystal violet method was used for the quantitative biofilm assay. Aggregative adherence assay was also studied using HEp-2 cell lines. Of 138 EAEC isolates from the acute diarrheal group, 121 (87.6%) EAEC isolates produced biofilm. In our findings, typical EAEC (62%) isolates were strong biofilm producers (37.5%) in the diarrheal group. Among adhesive variants, agg4A (39.6%) and aggA (21.6%) were the most common and were statistically significant (p = 0.01 and p = 0.03 respectively). We reported that the aggR gene along with the typical AA pattern was present in 71.4% of the EAEC strains in the diarrheal group, whereas it was present in 44% of the control group. Other aggR non-dependent genes like ORF3 and eilA may also lead to biofilm formation. In conclusion, there is significant heterogeneity in putative virulence genes of EAEC isolates from children and biofilm formation is associated with the combination of many genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA