Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023988

RESUMO

OBJECTIVE: In this article, we present the conceptual development of a robotics platform, called ALICE (Assistive Lower Limb Controlled Exoskeleton), for kinetic and kinematic gait characterization. The ALICE platform includes a robotics wearable exoskeleton and an on-board muscle driven simulator to estimate the user's kinetic parameters. BACKGROUND: Even when the kinematics patterns of the human gait are well studied and reported in the literature, there exists a considerable intra-subject variability in the kinetics of the movements. ALICE aims to be an advanced mechanical sensor that allows us to compute real-time information of both kinetic and kinematic data, opening up a new personalized rehabilitation concept. METHODOLOGY: We developed a full muscle driven simulator in an open source environment and validated it with real gait data obtained from patients diagnosed with multiple sclerosis. After that, we designed, modeled, and controlled a 6 DoF lower limb exoskeleton with inertial measurement units and a position/velocity sensor in each actuator. SIGNIFICANCE: This novel concept aims to become a tool for improving the diagnosis of pathological gait and to design personalized robotics rehabilitation therapies. CONCLUSION: ALICE is the first robotics platform automatically adapted to the kinetic and kinematic gait parameters of each patient.


Assuntos
Exoesqueleto Energizado , Extremidade Inferior/diagnóstico por imagem , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Pessoa de Meia-Idade , Fenômenos Fisiológicos Musculoesqueléticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA