Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37956080

RESUMO

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Assuntos
Mioclonia , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Cerebelo/fisiologia
2.
Neurobiol Dis ; 199: 106555, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844245

RESUMO

Progressive myoclonus ataxia (PMA) is a rare clinical syndrome characterized by the presence of progressive myoclonus and ataxia, and can be accompanied by mild cognitive impairment and infrequent epileptic seizures. This is the first study to describe the natural history of PMA and identify clinical, electrophysiological, and genetic features explaining the variability in disease progression. A Dutch cohort of consecutive patients meeting the criteria of the refined definition of PMA was included. The current phenotype was assessed during in-person consultation by movement disorders experts, and retrospective data was collected to describe disease presentation and progression, including brain imaging and therapy efficacy. Extensive genetic and electrophysiological tests were performed. The presence of cortical hyperexcitability was determined, by either the identification of a cortical correlate of myoclonic jerks with simultaneous electromyography-electroencephalography or a giant somatosensory evoked potential. We included 34 patients with PMA with a median disease duration of 15 years and a clear progressive course in most patients (76%). A molecular etiology was identified in 82% patients: ATM, CAMTA1, DHDDS, EBF3, GOSR2, ITPR1, KCNC3, NUS1, POLR1A, PRKCG, SEMA6B, SPTBN2, TPP1, ZMYND11, and a 12p13.32 deletion. The natural history is a rather homogenous onset of ataxia in the first two years of life followed by myoclonus in the first 5 years of life. Main accompanying neurological dysfunctions included cognitive impairment (62%), epilepsy (38%), autism spectrum disorder (27%), and behavioral problems (18%). Disease progression showed large variability ranging from an epilepsy free PMA phenotype (62%) to evolution towards a progressive myoclonus epilepsy (PME) phenotype (18%): the existence of a PMA-PME spectrum. Cortical hyperexcitability could be tested in 17 patients, and was present in 11 patients and supported cortical myoclonus. Interestingly, post-hoc analysis showed that an absence of cortical hyperexcitability, suggesting non-cortical myoclonus, was associated with the PMA-end of the spectrum with no epilepsy and milder myoclonus, independent of disease duration. An association between the underlying genetic defects and progression on the PMA-PME spectrum was observed. By describing the natural history of the largest cohort of published patients with PMA so far, we see a homogeneous onset with variable disease progression, in which phenotypic evolution to PME occurs in the minority. Genetic and electrophysiological features may be of prognostic value, especially the determination of cortical hyperexcitability. Furthermore, the identification of cortical and non-cortical myoclonus in PMA helps us gain insight in the underlying pathophysiology of myoclonus.

3.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
4.
Mov Disord ; 39(4): 674-683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385661

RESUMO

INTRODUCTION: Negative myoclonus (NM) is an involuntary movement caused by a sudden interruption of muscular activity, resulting in gait problems and falls. OBJECTIVE: To establish frequency, clinical impact, and neurophysiology of NM in progressive myoclonus ataxia (PMA) patients. METHODS: Clinical, neurophysiological, and genetic data of 14 PMA individuals from University Medical Centre Groningen (UMCG) Expertise Center Movement Disorder Groningen were retrospectively collected. Neurophysiological examination included video-electromyography-accelerometry assessment in all patients and electroencephalography (EEG) examination in 13 individuals. Jerk-locked (or silent period-locked) back-averaging and cortico-muscular coherence (CMC) analysis aided the classification of myoclonus. RESULTS: NM was present in 6 (NM+) and absent in 8 (NM-) PMA patients. NM+ individuals have more frequent falls (100% vs. 37.5%) and higher scores on the Gross Motor Function Classification System (GMFCS) (4.3 ±0.74 vs. 2.5 ±1.2) than NM- individuals. Genetic background of NM+ included GOSR2 and SEMA6B, while that of NM- included ATM, KCNC3, NUS1, STPBN2, and GOSR2. NM was frequently preceded by positive myoclonus (PM) and silent-period length was between 88 and 194 ms. EEG epileptiform discharges were associated with NM in 2 cases. PM was classified as cortical in 5 NM+ and 2 NM- through EEG inspection, jerk-locked back-averaging, or CMC analysis. DISCUSSION: Neurophysiological examination is crucial for detecting NM that could be missed on clinical examination due to a preceding PM. Evidence points to a cortical origin of NM, an association with more severe motor phenotype, and suggests the presence of genetic disorders causing either a PMA or progressive myoclonus epilepsy, rather than pure PMA phenotype. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Eletroencefalografia , Eletromiografia , Mioclonia , Proteínas Qb-SNARE , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Eletroencefalografia/métodos , Adulto , Mioclonia/fisiopatologia , Mioclonia/diagnóstico , Estudos Retrospectivos , Idoso , Ataxia/fisiopatologia
5.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37460907

RESUMO

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Assuntos
Ataxia Cerebelar , Canalopatias , Mioquimia , Ataxias Espinocerebelares/congênito , Degenerações Espinocerebelares , Camundongos , Animais , Canalopatias/tratamento farmacológico , Canalopatias/genética , Ataxia/tratamento farmacológico , Ataxia/genética , Mutação
6.
Pediatr Blood Cancer ; 71(4): e30903, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321586

RESUMO

Opsoclonus-myoclonus-ataxia syndrome (OMAS) is an autoimmune central nervous system disorder, primarily manifesting as a paraneoplastic sequalae to neuroblastoma, and characterized by motor disorders and behavioral disturbances. OMAS is typified by aberrant B-cell and T-cell activation. Current treatment involves immunosuppression using corticosteroids, intravenous immunoglobulin, and rituximab. However, these approaches often lead to treatment-related toxicities and symptomatic recurrences with chronic neurocognitive impairment. We treated three children with refractory neuroblastoma-associated OMAS with tacrolimus, a T-cell-targeting calcineurin inhibitor, effectively controlling symptoms within a month and enabling the discontinuation of immunosuppression with minimal side effects. Tacrolimus shows promise as a therapeutic option for refractory OMAS.


Assuntos
Neuroblastoma , Transtornos da Motilidade Ocular , Síndrome de Opsoclonia-Mioclonia , Criança , Humanos , Tacrolimo/uso terapêutico , Transtornos da Motilidade Ocular/complicações , Síndrome de Opsoclonia-Mioclonia/tratamento farmacológico , Síndrome de Opsoclonia-Mioclonia/etiologia , Síndrome de Opsoclonia-Mioclonia/diagnóstico , Neuroblastoma/complicações , Neuroblastoma/tratamento farmacológico , Neuroblastoma/diagnóstico , Ataxia/complicações
7.
Pediatr Blood Cancer ; 71(7): e31039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689540

RESUMO

BACKGROUND: Opsoclonus-myoclonus-ataxia syndrome (OMAS) is a rare autoimmune disorder of the nervous system presenting with abnormal eye and limb movements, altered gait, and increased irritability. Two to four percent of children diagnosed with neuroblastoma have neuroblastoma-associated OMAS (NA-OMAS). These children typically present with non-high-risk neuroblastoma that is cured with surgery, with or without chemotherapy. Despite excellent overall survival, patients with NA-OMAS can have significant persistent neurological and developmental issues. OBJECTIVE: This study aimed to describe long-term neurocognitive and adaptive functioning of patients with NA-OMAS treated with multimodal therapy, including intravenous immunoglobulin (IVIG) on Children's Oncology Group (COG) protocol ANBL00P3. METHODS: Of 53 children enrolled on ANBL00P3, 25 submitted evaluable neurocognitive data at diagnosis and at least one additional time point within 2 years and were included in the analyses. Adaptive development was assessed via the Vineland Adaptive Behavior Scale, and validated, age-appropriate measures of intellectual function were also administered. RESULTS: Twenty-one of the 25 patients in this cohort ultimately received IVIG. Descriptive spaghetti plots suggest that this cohort demonstrated stable long-term cognitive functioning and adaptive development over time. This cohort also demonstrated decreased OMAS scores over time consistent with improved OMAS symptoms. CONCLUSIONS: While statistical significance is limited by small sample size and loss to follow-up over 10 years, findings suggest stable long-term cognitive and adaptive functioning over time in this treated cohort.


Assuntos
Neuroblastoma , Síndrome de Opsoclonia-Mioclonia , Humanos , Síndrome de Opsoclonia-Mioclonia/terapia , Síndrome de Opsoclonia-Mioclonia/etiologia , Masculino , Feminino , Neuroblastoma/complicações , Neuroblastoma/terapia , Neuroblastoma/mortalidade , Pré-Escolar , Criança , Lactente , Imunoglobulinas Intravenosas/uso terapêutico , Seguimentos , Adolescente , Terapia Combinada , Prognóstico , Adaptação Psicológica , Cognição , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
BMC Neurol ; 24(1): 169, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783211

RESUMO

BACKGROUND: Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT: We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION: Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.


Assuntos
Epilepsias Mioclônicas Progressivas , Convulsões , Humanos , Epilepsias Mioclônicas Progressivas/complicações , Epilepsias Mioclônicas Progressivas/diagnóstico , Convulsões/diagnóstico , Convulsões/complicações , Convulsões/etiologia , Convulsões/tratamento farmacológico , Mioclonia/diagnóstico , Mioclonia/etiologia , Mioclonia/complicações , Mioclonia/tratamento farmacológico , Masculino , Canais de Potássio Shaw/genética , Feminino , Eletroencefalografia/métodos
9.
Brain ; 146(2): 657-667, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35875984

RESUMO

Autoimmune encephalitis can be classified into antibody-defined subtypes, which can manifest with immunotherapy-responsive movement disorders sometimes mimicking non-inflammatory aetiologies. In the elderly, anti-LGI1 and contactin associated protein like 2 (CASPR2) antibody-associated diseases compose a relevant fraction of autoimmune encephalitis. Patients with LGI1 autoantibodies are known to present with limbic encephalitis and additionally faciobrachial dystonic seizures may occur. However, the clinical spectrum of CASPR2 autoantibody-associated disorders is more diverse including limbic encephalitis, Morvan's syndrome, peripheral nerve hyperexcitability syndrome, ataxia, pain and sleep disorders. Reports on unusual, sometimes isolated and immunotherapy-responsive movement disorders in CASPR2 autoantibody-associated syndromes have caused substantial concern regarding necessity of autoantibody testing in patients with movement disorders. Therefore, we aimed to systematically assess their prevalence and manifestation in patients with CASPR2 autoimmunity. This international, retrospective cohort study included patients with CASPR2 autoimmunity from participating expert centres in Europe. Patients with ataxia and/or movement disorders were analysed in detail using questionnaires and video recordings. We recruited a comparator group with anti-LGI1 encephalitis from the GENERATE network. Characteristics were compared according to serostatus. We identified 164 patients with CASPR2 autoantibodies. Of these, 149 (90.8%) had only CASPR2 and 15 (9.1%) both CASPR2 and LGI1 autoantibodies. Compared to 105 patients with LGI1 encephalitis, patients with CASPR2 autoantibodies more often had movement disorders and/or ataxia (35.6 versus 3.8%; P < 0.001). This was evident in all subgroups: ataxia 22.6 versus 0.0%, myoclonus 14.6 versus 0.0%, tremor 11.0 versus 1.9%, or combinations thereof 9.8 versus 0.0% (all P < 0.001). The small group of patients double-positive for LGI1/CASPR2 autoantibodies (15/164) significantly more frequently had myoclonus, tremor, 'mixed movement disorders', Morvan's syndrome and underlying tumours. We observed distinct movement disorders in CASPR2 autoimmunity (14.6%): episodic ataxia (6.7%), paroxysmal orthostatic segmental myoclonus of the legs (3.7%) and continuous segmental spinal myoclonus (4.3%). These occurred together with further associated symptoms or signs suggestive of CASPR2 autoimmunity. However, 2/164 patients (1.2%) had isolated segmental spinal myoclonus. Movement disorders and ataxia are highly prevalent in CASPR2 autoimmunity. Paroxysmal orthostatic segmental myoclonus of the legs is a novel albeit rare manifestation. Further distinct movement disorders include isolated and combined segmental spinal myoclonus and autoimmune episodic ataxia.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Encefalite Límbica , Transtornos dos Movimentos , Mioclonia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Idoso , Estudos Retrospectivos , Tremor , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ataxia , Autoanticorpos , Transtornos dos Movimentos/etiologia , Contactinas/metabolismo
10.
CNS Spectr ; 29(2): 87-95, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38282559

RESUMO

Data related to psychiatric manifestations in subacute sclerosing panencephalitis (SSPE) is currently available only in the form of isolated case reports. In this systematic review, we evaluated the spectrum of psychiatric manifestations and their impact on the course and outcome of SSPE. Data were obtained from 4 databases (PubMed, Embase, Scopus, and Google Scholar), with the most recent search conducted on March 27, 2023. The PRISMA guidelines were followed, and the PROSPERO registration number for the protocol is CRD42023408227. SSPE was diagnosed using Dyken's criteria. Extracted data were recorded in an Excel spreadsheet. To evaluate the quality of the data, the Joanna Briggs Institute Critical Appraisal tool was employed. Our search resulted in 30 published reports of 32 patients. The mean age was 17.9 years. Schizophrenia, catatonia, and poorly characterized psychotic illnesses were the 3 most common psychiatric presentations that were seen in 63% (20/32) of cases. Catatonia was seen in 4 patients. Affective disorders, mania, and depression were reported among 22% (7/32) cases. In approximately 81% (26/32) cases, the course of SSPE was acute fulminant. Treatment with antipsychotic drugs had poor or no response. Out of 17 patients, who received antipsychotic drugs, 6 patients noted severe extrapyramidal adverse effects. SSPE often masquerades as a psychiatric disorder. Unresponsive psychiatric symptoms, early extrapyramidal signs, and progressive encephalopathy indicate SSPE.


Assuntos
Antipsicóticos , Catatonia , Panencefalite Esclerosante Subaguda , Humanos , Adolescente , Panencefalite Esclerosante Subaguda/complicações , Panencefalite Esclerosante Subaguda/diagnóstico , Vírus do Sarampo
11.
BMC Pediatr ; 24(1): 427, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961420

RESUMO

BACKGROUND: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare and life-threatening autoimmune disease of the central nervous system. So far, only ten cases of PERM have been reported in children worldwide, including the one in this study. CASE PRESENTATION: We report a case of an 11-year-old boy with PERM with an initial presentation of abdominal pain, skin itching, dysuria, urinary retention, truncal and limb rigidity, spasms of the trunk and limbs during sleep, deep and peripheral sensory disturbances, and dysphagia. A tissue-based assay using peripheral blood was positive, demonstrated by fluorescent staining of mouse cerebellar sections. He showed gradual and persistent clinical improvement after immunotherapy with intravenous immunoglobulin, steroids, plasmapheresis and rituximab. CONCLUSIONS: We summarized the diagnosis and treatment of a patient with PERM and performed a literature review of pediatric PERM to raise awareness among pediatric neurologists. A better comprehension of this disease is required to improve its early diagnosis, treatment, and prognosis.


Assuntos
Encefalomielite , Rigidez Muscular , Mioclonia , Humanos , Masculino , Criança , Rigidez Muscular/etiologia , Encefalomielite/diagnóstico , Encefalomielite/complicações , Mioclonia/etiologia , Mioclonia/diagnóstico
12.
Pediatr Radiol ; 54(6): 954-964, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38613691

RESUMO

BACKGROUND: Early precision diagnosis and effective treatment of opsoclonus myoclonus ataxia syndrome (OMAS) patients presenting with neuroblastoma can prevent serious neurological outcomes. OBJECTIVE: To assess the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in pediatric OMAS with neuroblastoma. MATERIALS AND METHODS: A retrospective evaluation of 45 patients diagnosed with OMAS who underwent 18F-FDG PET/CT was performed. A univariate analysis was performed to compare clinical characteristics between OMAS with and without neuroblastoma. Univariate and multivariate logistic regression analyses were applied to identify independent risk factors for OMAS with neuroblastoma and to develop the clinical model. Finally, independent risk factors and PET/CT were fitted to build the combined model for the diagnosis of OMAS with neuroblastoma and presented as a nomogram. Receiver operating characteristic curve, decision curve, and calibration curve analyses were conducted to evaluate the performance of the models. RESULTS: Among 45 patients, 27 were PET/CT-positive, 23/27 lesions were neuroblastoma, and four were false positives. One of the false positive patients was confirmed to be adrenal reactive hyperplasia by postoperative pathology, and the symptoms of OMAS disappeared in the remaining three cases during clinical follow-up. The average maximal standardized uptake value of PET/CT-positive lesions was 2.6. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT were 100%, 81.8%, 85.2%, 100%, and 91.1%, respectively. Age at diagnosis, lactate dehydrogenase, and neuron-specific enolase showed statistically significant differences between OMAS with and without neuroblastoma. Lactate dehydrogenase was identified as the independent risk factor to develop the clinical model, and the clinical model demonstrated an area under the curve (AUC) of 0.82 for the diagnosis of OMAS with neuroblastoma, with an AUC as high as 0.91 when combined with PET/CT. The decision curve analysis and calibration curve demonstrated that the nomogram had good consistency and clinical usefulness. CONCLUSION: In patients with OMAS, 18F-FDG PET/CT has a high diagnostic accuracy in detecting tumors of the neuroblastoma, especially when combined with the independent risk factor serum lactate dehydrogenase.


Assuntos
Fluordesoxiglucose F18 , Neuroblastoma , Síndrome de Opsoclonia-Mioclonia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Humanos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/complicações , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feminino , Masculino , Síndrome de Opsoclonia-Mioclonia/diagnóstico por imagem , Estudos Retrospectivos , Pré-Escolar , Criança , Lactente , Sensibilidade e Especificidade , Diagnóstico Diferencial
13.
Int J Neurosci ; : 1-5, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451541

RESUMO

BACKGROUND: Dehydrodolichyl diphosphate synthase complex is encoded by DHDDS. De novo mutations in this gene are associated with epilepsy, movement disorders, intellectual and motor disabilities. The clinical picture is commonly identified in children and shows variations in terms of age of onset, severity, seizure types, and types of dyskinesia. CASE: we present a case with a infantile- onset epilepsy and severe global developmental delay, caused by a novel, de novo homozygous variant (c.425C > T, p.Thr142Met) in DHDDS. Clinical improvement was achieved with valproate and tetrabenazine treatments in the 2-year-old male patient with drug-resistant epilepsy, hyperkinetic movement disorder and myoclonus. CONCLUSION: Despite being rare, DHDDS-related diseases should be considered in patients with movement disorders, seizures and global developmental delay in infancy in differential diagnosis of patients resembling neuronal ceroid lipofuscinosis or progressive myoclonic epilepsies.

14.
Int J Toxicol ; 43(2): 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38063479

RESUMO

When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.


Assuntos
Mioclonia , Ratos , Suínos , Animais , Cães , Ratos Sprague-Dawley , Porco Miniatura , Estudos Retrospectivos , Macaca fascicularis , Tremor/induzido quimicamente , Incidência , Convulsões , Ataxia
15.
J Formos Med Assoc ; 123(7): 811-817, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38360490

RESUMO

BACKGROUND: The SARS-CoV-2 virus has been a global public health threat since December 2019. This study aims to investigate the neurological characteristics and risk factors of coronavirus disease 2019 (COVID-19) in Taiwanese children, using data from a collaborative registry. METHODS: A retrospective, cross-sectional, multi-center study was done using an online network of pediatric neurological COVID-19 cohort collaborative registry. RESULTS: A total of 11160 COVID-19-associated emergency department (ED) visits and 1079 hospitalizations were analyzed. Seizures were the most common specific neurological symptom, while encephalitis and acute disseminated encephalomyelitis (ADEM) was the most prevalent severe involvement. In ED patients with neurological manifestations, severe neurological diagnosis was associated with visual hallucination, seizure with/without fever, behavior change, decreased GCS, myoclonic jerk, decreased activity/fatigue, and lethargy. In hospitalized patients with neurological manifestations, severe neurological diagnosis was associated with behavior change, visual hallucination, decreased GCS, seizure with/without fever, myoclonic jerk, fatigue, and hypoglycemia at admission. Encephalitis/ADEM was the only risk factor for poor neurological outcomes at discharge in hospitalized patients. CONCLUSION: Neurological complications are common in pediatric COVID-19. Visual hallucination, seizure, behavior change, myoclonic jerk, decreased GCS, and hypoglycemia at admission are the most important warning signs of severe neurological involvement such as encephalitis/ADEM.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Taiwan/epidemiologia , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Criança , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Adolescente , Lactente , Fatores de Risco , Doenças do Sistema Nervoso/etiologia , Hospitalização/estatística & dados numéricos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Convulsões/etiologia , Convulsões/epidemiologia , Sistema de Registros
16.
Wien Med Wochenschr ; 174(1-2): 30-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37523107

RESUMO

BACKGROUND: In accordance with the rising number of SARS-CoV­2 infections, reports of neurological complications have also increased. They include cerebrovascular diseases but also immunological diseases such as Guillain-Barre syndrome (GBS), Miller-Fisher syndrome (MFS), and opsoclonus-myoclonus-ataxia syndrome (OMAS). While GBS and MFS are typical postinfectious complications, OMAS has only recently been described in the context of COVID-19. GBS, MFS, and OMAS can occur as para- and postinfectious, with different underlying pathomechanisms depending on the time of neurological symptom onset. The study aimed to describe clinical features, time between infection and onset of neurological symptoms, and outcome for these diseases. METHODS: All COVID-19 patients treated in the neurological ward between January 2020 and December 2022 were screened for GBS, MFS, and OMAS. The clinical features of all patients, with a particular focus on the time of onset of neurological symptoms, were analyzed. RESULTS: This case series included 12 patients (7 GBS, 2 MFS, 3 OMAS). All GBS and one MFS patient received immunomodulatory treatment. Three patients (2 GBS, 1 OMAS) had a severe COVID-19 infection and received mechanical ventilation. In patients with OMAS, only one patient received treatment with intravenous immunoglobulin and cortisone. The remaining two patients, both with disease onset concurrent with SARS-COV­2 infection, recovered swiftly without treatment. In all subgroups, patients with concurrent onset of neurological symptoms and COVID-19 infection showed a trend toward shorter disease duration. CONCLUSION: All patient groups displayed a shorter disease duration if the onset of neurological symptoms occurred shortly after the COVID-19 diagnosis. In particular, both the OMAS patients with symptom onset concurrent with COVID-19 showed only abortive symptoms followed by a swift recovery. This observation would suggest different pathomechanisms for immune-mediated diseases depending on the time of onset after an infection.


Assuntos
COVID-19 , Síndrome de Guillain-Barré , Síndrome de Miller Fisher , Mioclonia , Transtornos da Motilidade Ocular , Humanos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Síndrome de Guillain-Barré/complicações , Estudos Retrospectivos , Teste para COVID-19 , Mioclonia/complicações , Transtornos da Motilidade Ocular/complicações , COVID-19/complicações , SARS-CoV-2 , Síndrome de Miller Fisher/diagnóstico , Síndrome de Miller Fisher/terapia , Síndrome de Miller Fisher/complicações , Ataxia/complicações
17.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541088

RESUMO

Asterixis is a subtype of negative myoclonus characterized by brief, arrhythmic lapses of sustained posture due to involuntary pauses in muscle contraction. We performed a narrative review to characterize further asterixis regarding nomenclature, historical aspects, etiology, pathophysiology, classification, diagnosis, and treatment. Asterixis has been classically used as a synonym for negative myoclonus across the literature and in previous articles. However, it is important to distinguish asterixis from other subtypes of negative myoclonus, for example, epileptic negative myoclonus, because management could change. Asterixis is not specific to any pathophysiological process, but it is more commonly reported in hepatic encephalopathy, renal and respiratory failure, cerebrovascular diseases, as well as associated with drugs that could potentially lead to hyperammonemia, such as valproic acid, carbamazepine, and phenytoin. Asterixis is usually asymptomatic and not spontaneously reported by patients. This highlights the importance of actively searching for this sign in the physical exam of encephalopathic patients because it could indicate an underlying toxic or metabolic cause. Asterixis is usually reversible upon treatment of the underlying cause.


Assuntos
Encefalopatias , Discinesias , Mioclonia , Humanos , Mioclonia/diagnóstico , Tremor/diagnóstico , Tremor/etiologia , Carbamazepina/uso terapêutico
18.
Clin Genet ; 103(2): 209-213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161439

RESUMO

SGCE myoclonus-dystonia is a monogenic form of dystonia with an autosomal dominant mode of inheritance that co-occurs with a myoclonic jerk. In this study, we present 12 Japanese patients from nine families with this disease. Targeted next-generation sequencing covering major causative genes for monogenic dystonias identified nine distinct SGCE mutations from each of the families: three nonsense, two frameshift, two missense, one in-frame 15 bp deletion, and one splice donor site mutations, of which four were previously unreported. One missense mutation (c.662G>T, p.Gly221Val) was located at the 3' end of exon 5 (NM_001099400), which was predicted to cause aberrant splicing according to in silico predictions. Minigene assays performed together with the c.825+1G>C mutation demonstrated complete skipping of exon 5 and 6, respectively, in their transcripts. The other missense (c.1345A>G, p.Met449Val) and 15 bp deletion (c.168_182del, p.Phe58_Leu62del) mutations showed a significant reduction in cell membrane expression via HiBiT bioluminescence assay. Therefore, we concluded that all the detected mutations were disease-causing. Unlike the other detected mutations, p.Met449Val affects only isoform 3 (NP_001092870 encoded by NM_001099400) among the variously known isoforms of SGCE. This isoform is brain-specific and is mostly expressed in the cerebellum, which supports recent studies showing that cerebellar dysfunction is a key element in the pathophysiology of SGCE myoclonus-dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , População do Leste Asiático , Distúrbios Distônicos/genética , Mutação/genética , Distonia/genética , Isoformas de Proteínas/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
19.
Cerebellum ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814146

RESUMO

Opsoclonus-myoclonus syndrome (OMS) as a rare neurological encephalopathic entity associated with non-specific infections or cancer processes has been repeatedly described in the setting of SARS-CoV-2 infection. We report a case of a 53-year-old man with SARS-CoV-2 infection, who developed clinical features of opsoclonus-myoclonus ataxia syndrome including cognitive impairments with a prolonged course of disease. Of particular note, cerebrospinal fluid (CSF) analysis revealed the production of myelin oligodendrocyte glycoprotein (MOG) antibodies, suggesting an underlying neuroimmunological mechanism associated with infection with the novel SARS-CoV-2 virus.

20.
Epilepsia ; 64 Suppl 1: S3-S8, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36707971

RESUMO

Familial adult myoclonus epilepsy/benign adult familial myoclonic epilepsy (FAME/BAFME) has emerged as a specific and recognizable epilepsy syndrome with autosomal dominant inheritance found around the world. Here, we trace the history of this syndrome. Initially, it was likely conflated with other familial myoclonus epilepsies, especially the progressive myoclonus epilepsies. As the progressive myoclonus epilepsies became better understood clinically and genetically, this group began to stand out and was first recognized as such in Japan. Subsequently, families were recognized around the world and there was debate as to whether they represented one or multiple disorders. Clarification came with the identification of pentanucleotide repeats in Japanese families, and FAME/BAFME was quickly shown to be due to pentanucleotide expansions in at least six genes. These have geographic predilections and appear to have been caused by historically ancient initial mutations. Within and between families, there is some variation in the phenotype, explained in large part by expansion size, but whether there are features specific to individual genes remains uncertain.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Epilepsias Mioclônicas/genética , Fenótipo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Japão , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA