Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Environ Res ; 242: 117568, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979930

RESUMO

Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.


Assuntos
Acrilamidas , Líquidos Iônicos , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Cobre , Nanogéis , Águas Residuárias , Adsorção , Corantes , Hidrogéis/química , Íons , Fenóis , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
2.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326903

RESUMO

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Ratos , Animais , Nanogéis , Osso e Ossos/diagnóstico por imagem , Hidrogéis/farmacologia
3.
J Nanobiotechnology ; 22(1): 338, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890737

RESUMO

BACKGROUND: Incomplete radiofrequency ablation (iRFA) in hepatocellular carcinoma (HCC) often leads to local recurrence and distant metastasis of the residual tumor. This is closely linked to the development of a tumor immunosuppressive environment (TIME). In this study, underlying mechanisms and potential therapeutic targets involved in the formation of TIME in residual tumors following iRFA were explored. Then, TAK-981-loaded nanocomposite hydrogel was constructed, and its therapeutic effects on residual tumors were investigated. RESULTS: This study reveals that the upregulation of small ubiquitin-like modifier 2 (Sumo2) and activated SUMOylation is intricately tied to immunosuppression in residual tumors post-iRFA. Both knockdown of Sumo2 and inhibiting SUMOylation with TAK-981 activate IFN-1 signaling in HCC cells, thereby promoting dendritic cell maturation. Herein, we propose an injectable PDLLA-PEG-PDLLA (PLEL) nanocomposite hydrogel which incorporates self-assembled TAK-981 and BSA nanoparticles for complementary localized treatment of residual tumor after iRFA. The sustained release of TAK-981 from this hydrogel curbs the expansion of residual tumors and notably stimulates the dendritic cell and cytotoxic lymphocyte-mediated antitumor immune response in residual tumors while maintaining biosafety. Furthermore, the treatment with TAK-981 nanocomposite hydrogel resulted in a widespread elevation in PD-L1 levels. Combining TAK-981 nanocomposite hydrogel with PD-L1 blockade therapy synergistically eradicates residual tumors and suppresses distant tumors. CONCLUSIONS: These findings underscore the potential of the TAK-981-based strategy as an effective therapy to enhance RFA therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Hidrogéis , Neoplasias Hepáticas , Nanocompostos , Ablação por Radiofrequência , Sumoilação , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Hidrogéis/química , Nanocompostos/química , Nanocompostos/uso terapêutico , Humanos , Camundongos , Ablação por Radiofrequência/métodos , Sumoilação/efeitos dos fármacos , Linhagem Celular Tumoral , Masculino
4.
Mol Pharm ; 20(1): 767-774, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322617

RESUMO

Natural polymer-based hydrogels are excellent for encapsulating hydrophilic drugs, but they are mechanically weak and degrade easily. In this communication, we exploit the electrostatic interaction between nanosilicates (nSi) and gelatin methacrylate (GelMA) to form a mechanically tough nanocomposite hydrogel for pharmaceutical drug delivery. These hydrogels, prepared at subzero temperatures to form cryogels, displayed macroporous structures, which favors cell infiltration. The designed tough cryogel also showed a slower rate of degradation. Furthermore, we encapsulated the small molecule metformin and sustained the drug release under physiological conditions. Cryogel-loaded metformin reduced the effect of endothelial cell injury caused by nutrient deprivation in vitro. Finally, we hypothesize that this versatile nanocomposite material will find use in diverse biomedical applications.


Assuntos
Hidrogéis , Nanopartículas , Hidrogéis/química , Criogéis , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Gelatina/química , Nanopartículas/química
5.
Environ Sci Technol ; 57(41): 15725-15735, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787747

RESUMO

Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.


Assuntos
Águas Residuárias , Purificação da Água , Nanogéis , Destilação/métodos , Purificação da Água/métodos , Membranas Artificiais , Hidrogéis , Politetrafluoretileno , Tensoativos
6.
J Nanobiotechnology ; 21(1): 435, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981675

RESUMO

BACKGROUND: Bacterial infection, complex wound microenvironment and persistent inflammation cause delayed wound healing and scar formation, thereby disrupting the normal function and appearance of skin tissue, which is one of the most problematic clinical issues. Although Ag NPs have a strong antibacterial effect, they tend to oxidize and form aggregates in aqueous solution, which reduces their antibacterial efficacy and increases their toxicity to tissues and organs. Current research on scar treatment is limited and mainly relies on growth factors and drugs to reduce inflammation and scar tissue formation. Therefore, there is a need to develop methods that effectively combine drug delivery, antimicrobial and anti-inflammatory agents to modulate the wound microenvironment, promote wound healing, and prevent skin scarring. RESULTS: Herein, we developed an innovative Ag nanocomposite hydrogel (Ag NCH) by incorporating Ag nanoparticles (Ag NPs) into a matrix formed by linking catechol-modified hyaluronic acid (HA-CA) with 4-arm PEG-SH. The Ag NPs serve dual functions: they act as reservoirs for releasing Ag/Ag+ at the wound site to combat bacterial infections, and they also function as cross-linkers to ensure the sustained release of basic fibroblast growth factor (bFGF). The potent antibacterial effect of the Ag NPs embedded in the hydrogel against S.aureus was validated through comprehensive in vitro and in vivo analyses. The microstructural analysis of the hydrogels and the in vitro release studies confirmed that the Ag NCH possesses smaller pore sizes and facilitates a slower, more sustained release of bFGF. When applied to acute and infected wound sites, the Ag NCH demonstrated remarkable capabilities in reshaping the immune and regenerative microenvironment. It induced a shift from M1 to M2 macrophage polarization, down-regulated the expression of pro-inflammatory factors such as IL-6 and TNF-α, and up-regulated the expression of anti-inflammatory IL-10. Furthermore, the Ag NCH played a crucial role in regulating collagen deposition and alignment, promoting the formation of mature blood vessels, and significantly enhancing tissue reconstruction and scarless wound healing processes. CONCLUSIONS: We think the designed Ag NCH can provide a promising therapeutic strategy for clinical applications in scarless wound healing and antibacterial therapy.


Assuntos
Cicatriz , Nanopartículas Metálicas , Humanos , Antibacterianos/farmacologia , Preparações de Ação Retardada , Inflamação , Nanogéis , Prata/farmacologia , Cicatrização , Nanocompostos
7.
Environ Res ; 212(Pt B): 113201, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35413301

RESUMO

Copolymer of acrylic acid (AA) and itaconic acid (IA) grafted onto sodium carboxymethyl cellulose hydrogel (CMC-g-poly (AA-co-IA)) was successfully synthesized as an adsorbent to remove safranin-O from wastewater. The swelling and removal efficiencies of CMC-g-poly (AA-co-IA) were enhanced by increasing IA/AA molar ratio as well as by incorporation of montmorillonite clay nano-sheets (MMT). The surface area of MMT, CMC-g-poly (AA-co-IA), and CMC-g-poly (AA-co-IA) samples was 15.632, 0.61452, and 0.66584 m2/g, respectively, indicating the effectiveness of MMT nano-sheets in improving hydrogel surface area. The maximum removal efficiency of CMC-g-poly (AA-co-IA)/MMT under optimum conditions i.e., pH of 8, initial concentration of 10 mg/L, adsorbent dose of 2 g/L, and contact time of 40 min was ascertained 99.78% using a response surface methodology-central composite design (RSM-CCD). Pseudo-second-order and Langmuir models giving the maximum monolayer adsorption capacity of 18.5185 mg/g and 19.1205 mg/g for CMC-g-poly (AA-co-IA) and CMC-g-poly (AA-co-IA)/MMT samples, respectively are the best-fitted models for kinetic and equilibrium data. Thermodynamically, safranin-O decontamination was spontaneous, exothermic, and entropy decreasing. Moreover, ad (de)sorption behavior study showed that CMC-g-poly (AA-co-IA)/MMT performance was not changed after multiple recovery steps. Therefore, CMC-g-poly (AA-co-IA)/MMT was considered as a highly potential adsorbent for safranin-O removal from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Acrilatos , Adsorção , Carboximetilcelulose Sódica , Cátions , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Nanogéis , Fenazinas , Succinatos
8.
Chemistry ; 27(10): 3268-3272, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33300628

RESUMO

The composite hydrogel of a nanoscale metal-organic framework (NMOF) and nanoclay has emerged as a new soft-material with advanced properties and applications. Herein, we report a facile synthesis of a hydrogel nanocomposite by charge-assisted self-assembly of Pd@ZIF-8 nanoparticles with Laponite® nanoclay which coat the surface of Pd@ZIF-8 nanoparticles. Such surface coating significantly enhanced the thermal stability of the ZIF-8 compared to the pristine framework. Further, the Pd@ZIF-8+LP hydrogel nanocomposite shows better size-selective catalytic hydrogenation of olefins than Pd@ZIF-8 nanoparticles based on selective diffusion of the substrate.

9.
J Environ Manage ; 294: 112918, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139646

RESUMO

In the present study chitosan-aminopropylsilane graphene oxide (CS-APSGO) nanocomposite hydrogel was synthesized and utilized as a hydrophilic additive in different dosages (0.5, 1, 2 and 5 wt%) in fabrication of porous polyethersulfone (PES) membranes via the phase inversion induced process by immersion precipitation method for heavy metal ion and dye removal. The modified membranes were characterized using ATR-FTIR, AFM, SEM, water contact angle, overall porosity and mean pore radius evaluations and zeta potential measurement. The addition of CS-APSGO nanocomposite hydrogel to PES doping solutions enhanced membranes hydrophilicity and consequently pure water flux permeability. Filtration performance of the CS-APSGO embedded membranes showed promising antifouling properties during BSA filtration test (FRR> 90%) and 1 wt% membranes showed the highest pure water flux of 123.8 L/m2 h with BSA rejection more than 98% and removal capability more than 82% for lead (II) ion, 90.5% and 98.5% for C.I. Reactive Blue 50 and C.I. Reactive Green 19, respectively. Therefore, the CS-APSGO nanocomposite hydrogel blending in order to modification of PES-based membranes have a noticeable potential in improving filtration performance of blended membranes.


Assuntos
Quitosana , Grafite , Chumbo , Membranas Artificiais , Nanogéis , Polímeros , Silanos , Sulfonas
10.
Chem Rec ; 20(8): 773-792, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32154653

RESUMO

The properties of polyvinyl alcohol (PVA) nanocomposite hydrogels influenced by nanoparticles are reviewed. Various kinds of nanoparticles with excellent mechanical and electrical properties have been introduced into PVA hydrogel to produce stretchable and conductive PVA nanocomposite hydrogel. Understanding the mechanism between the matrix of PVA hydrogel and nanoparticles is therefore critical for the development of PVA nanocomposite hydrogels. This review focuses on the nanoparticles include carbon nanotubes, graphene oxide and metal nanoparticles, and describes the effects of nanoparticles on the mechanical and conductive properties of PVA nanocomposite hydrogels. A new promising area of soft stretchable PVA nanocomposite hydrogel is highlighted for possible applications. Finally, a brief outlook for future research is presented.

11.
Small ; 15(15): e1900242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883027

RESUMO

Hydrogels are emerging biomaterials with desirable physicochemical characteristics. Doping of metal ions such as Ca2+ , Mg2+ , and Fe2+ provides the hydrogels with unique attributes, including bioactivity, conductivity, and tunability. Traditionally, this doping is achieved by the interaction between metal ions and corresponding ligands or the direct incorporation of as-prepared metal-based nanoparticles (NPs). However, these approaches rely on a complex and laborious preparation and are typically restricted to few selected ion species. Herein, by mixing aqueous solutions of ligands (bisphosphonates, BPs), polymer grafted with ligands, and metal ions, a series of self-assembled metallic-ion nanocomposite hydrogels that are stabilized by the in situ formed ligand-metal ion (BP-M) NPs are prepared. Owing to the universal coordination between BPs and multivalent metal ions, the strategy is highly versatile and can be generalized for a wide array of metal ions. Such hydrogels exhibit a wide spectrum of mechanical properties and remarkable dynamic properties, such as excellent injectability, rapid stress relaxation, efficient ion diffusion, and triggered disassembly for harvesting encapsulated cells. Meanwhile, the hydrogels can be conveniently coated or patterned onto the surface of metals via electrophoresis. This work presents a universal strategy to prepare designer nanocomposite materials with highly tunable and dynamic behaviors.

12.
Chemistry ; 21(36): 12620-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26230284

RESUMO

The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross-linkers, can be prepared by dual-enzyme-triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual-enzyme-triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self-immobilized HRP-GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.


Assuntos
Enzimas Imobilizadas/química , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Hidrogéis/química , Nanocompostos/química , Biocatálise , Catálise , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Polimerização
13.
Int J Biol Macromol ; 277(Pt 1): 134163, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059536

RESUMO

This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.

14.
Carbohydr Polym ; 334: 122020, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553219

RESUMO

Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.


Assuntos
Nanoestruturas , Óxido de Zinco , Hidrogéis/farmacologia , Hidrogéis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Carboximetilcelulose Sódica/química , Antibacterianos/química , Nanoestruturas/química , Cicatrização
15.
Int J Nanomedicine ; 19: 2487-2506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486937

RESUMO

Background: Delayed wound healing in skin injuries has become a significant problem in clinics, seriously affecting and even threatening life and health. Recently, research interest has increased in developing wound dressings containing bioactive compounds capable of improving outcomes for complex healing needs. Methods: In this study, Puerarin-loaded nanoparticles (Pue-NPs) were prepared using the cell-penetrating peptide-poly (lactic-co-glycolic acid) (CPP-PLGA) as a drug carrier by the emulsified solvent evaporation method. Then, they were added into poly (acrylic acid) to obtain a self-assembled nanocomposite hydrogels (SANHs) drug delivery system using the co-polymerization method. The particle size, zeta potential, and micromorphology of Pue-NPs were measured; the appearance, mechanical properties, adhesive strength, and biological activity of SANHs were performed. Finally, the potential of SANHs for wound healing was further evaluated in streptozotocin-induced diabetic mice. Results: Pue-NPs were regularly spherical, with an average particle size of 134.57 ± 1.42 nm and a zeta potential of 2.14 ± 0.78 mV. SANHs was colorless and transparent with a honeycomb-like porous structure and had an excellent swelling ratio (917%), water vapor transmission rate (3077 g·m-2·day-1), mechanical properties (Young's modulus of 18 kPa, elongation at break of 307%), and adhesive strength (15.5 kPa). SANHs exhibited sustained release of Pue over 48h, with a cumulative release of 55.60 ± 6.01%. In vitro tests revealed that the SANHs presented a 92.22% antibacterial rate against Escherichia coli after 4h, and a 61.91% scavenging rate of 1.1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical. In vivo experiments showed that SANHs accelerated wound repair by reducing the inflammatory response at the wound site, promoting angiogenesis, and facilitating epidermal regeneration and collagen deposition. Conclusion: In conclusion, we successfully prepared SANHs. Our results show that SANHs have excellent performance and improves wound healing in diabetic mice model, indicating that it can be used to develop an effective strategy for the treatment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Camundongos , Animais , Hidrogéis/química , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização , Nanopartículas/química , Antibacterianos/farmacologia , Polímeros/farmacologia , Peptídeos/farmacologia
16.
Carbohydr Polym ; 328: 121721, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220324

RESUMO

In this contribution, a bio-nanocomposite hydrogel film (CS/XG.SiO2) of chitosan/silica NPs-modified xanthan gum was prepared via a facile solution casting blending approach and utilized to capture the anionic methyl orange (MO) from aqueous solution. A Taguchi standard method was used to optimize the hydrogel nanocomposite synthesis reaction conditions after comprehensive characterization using various techniques. Under various operating parameters, the hydrogel biofilm was tested for its effectiveness in adsorbing MO dye in a batch process. In agreement with Langmuir isotherm, the CS/XG.SiO2 biofilm was capable of adsorbing MO at a maximum capacity of 294 mg/g at pH 5.30, contact time 45 min, temperature 25 °C, and concentration (C0) 50 mg/L. Pseudo-second-order model and adsorption kinetics data well matched. The thermodynamic data indicate that adsorption occurred spontaneously and exothermically. The main mechanisms driving the adsorption are electrostatic interactions and hydrogen bonding between the CS/XG.SiO2 nanocomposite and the dye. Furthermore, the biofilm is regenerative, allowing for up to five reuses while maintaining a 75 % dye removal efficiency. This study highlights that the CS/XG.SiO2 hydrogel nanocomposite is an inexpensive, reusable, and eco-friendly bio-adsorbent that is capable of anionic dye adsorption.

17.
Acta Biomater ; 174: 127-140, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38042262

RESUMO

Microneedles (MNs) are increasingly used in transdermal drug delivery due to high bioavailability, simple operation, and improved patient compliance. However, further clinical applications are hindered by unsatisfactory mechanical strength and uncontrolled drug release. Herein, an enzyme-mediated approach is reported for the fabrication of nanocomposite hydrogel-based MNs with tunable mechanical strength and controllable transdermal efficiency. As a proof-of-concept, tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP) was chosen as a model drug for photodynamic therapy of melanoma. TMPyP-loaded PLGA nanoparticles (NP/TMPyP) served as an inner phase of MNs for controlled release of photosensitizers, and enzyme-mediated hyaluronic acid-tyramine (HAT) hydrogels served as an external phase for optimizing the mechanical strength of MNs. By changing the concentration of HRP and H2O2, three types of MNs were fabricated for transdermal delivery of TMPyP, which demonstrated different cross-linking densities and various mechanical strength. Among the three MNs, the HAT-Medium@NP/TMPyP-MN with a medium mechanical strength exhibited the highest values of transdermal efficiency in vitro and the longest retention time in vivo. As compared to pure TMPyP and TMPyP-loaded nanoparticles, the HAT-Medium@NP/TMPyP-MN demonstrated higher anticancer efficacy in both melanoma A375 cells and a xenografted tumor mouse model. Therefore, the enzyme-mediated nanocomposite hydrogel MNs show great promise in the transdermal delivery of therapeutic drugs with enhanced performance. STATEMENT OF SIGNIFICANCE: This study reports an enzyme-mediated approach for the fabrication of photodynamically-active microneedles (HAT@NP/TMPyP-MNs) with tunable mechanical strength and controllable transdermal efficiency. On one hand, HAT hydrogels that bear different cross-linking densities, facilitate tunable mechanical strength and optimized transdermal performances of MNs; on the other hand, NP/TMPyP and HAT network contribute to sustained release of photosensitizers. Comparing to other formulation (i.e., NP/TMPyP or TMPyP), the HAT-Medium@NP/TMPyP-MN exhibited excelling anticancer efficacy in photodynamic therapy in vitro and in vivo. We believe that the combination of enzyme-mediated polymeric cross-linking and slow-releasing nano-vehicles in a single nanocomposite platform provides a versatile approach for the fabrication of MNs with enhanced therapeutic efficacy, which holds great promise in the transdermal delivery of various therapeutic drugs in future.


Assuntos
Melanoma , Fármacos Fotossensibilizantes , Humanos , Camundongos , Animais , Nanogéis , Melanoma/tratamento farmacológico , Peróxido de Hidrogênio , Administração Cutânea , Ácido Hialurônico , Hidrogéis/farmacologia , Sistemas de Liberação de Medicamentos , Agulhas
18.
J Colloid Interface Sci ; 670: 1-11, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749378

RESUMO

Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Nanocompostos , Agulhas , Impressão Tridimensional , Soroalbumina Bovina , Hidrogéis/química , Nanocompostos/química , Animais , Soroalbumina Bovina/química , Soroalbumina Bovina/administração & dosagem , Administração Cutânea , Bovinos , Tamanho da Partícula , Humanos , Concentração de Íons de Hidrogênio , Propriedades de Superfície , Temperatura
19.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703527

RESUMO

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.


Assuntos
Gelatina , Hidrogéis , Nanocompostos , Osteogênese , Espécies Reativas de Oxigênio , Crânio , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Gelatina/química , Nanocompostos/química , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Crânio/efeitos dos fármacos , Crânio/patologia , Camundongos , Ratos , Regeneração Óssea/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Titânio/química , Linhagem Celular , Engenharia Tecidual/métodos
20.
Int J Nanomedicine ; 19: 6659-6676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975320

RESUMO

Background: Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods: The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results: In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion: The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.


Assuntos
Alginatos , Anti-Inflamatórios , Polpa Dentária , Hidrogéis , Nanocompostos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Nanocompostos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Alginatos/química , Alginatos/farmacologia , Pulpite/terapia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Silicatos/química , Silicatos/farmacologia , Ratos , Diferenciação Celular/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Células Cultivadas , Compostos de Alumínio/química , Compostos de Alumínio/farmacologia , Arginina/química , Arginina/farmacologia , Ratos Sprague-Dawley , Combinação de Medicamentos , Masculino , Óxidos/química , Óxidos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA