Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Microsc ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874394

RESUMO

Nanoporous gold electrodes are of great interest in electroanalytical chemistry, because of their unusual activity and large surface area. The electrochemical activity can be further improved by coating with molecular catalysts such as the tetraruthenated cobalt-tetrapyridylporphyrazines investigated in this work. The plasmonic enhancement of the scattered light at the nanoholes and borders modifies the electrode's optical characteristics, improving the transmission through the surface-enhanced Raman scattering (SERS) effect. When monitored by hyperspectral dark-field and confocal Raman microscopy, this effect allows probing of the porphyrazine species at the plasmonic nanholes, improving the understanding of the chemically modified gold electrodes.

2.
Nanotechnology ; 32(22)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33631728

RESUMO

Nanoholes obtained by droplet epitaxy has been intensively investigated as an important material platform for the fabrication of nanodevices due to their unique topology. However, the final fabricated nanoholes are very difficult to achieve a highly symmetric circular structure, and usually have two or four gaps in the sidewall of the holes. Here we have presented a developed model to inquire into the reasons for the formation of the gaps at the periphery of nanoholes and discuss how to improve the structural symmetry of the nanoholes. It is found that the anisotropic interface diffusion of As atoms decomposed by substrate can result in the formation of the gaps. In order to improve the symmetry of final nanostructures, we can minimize the interval time between deposition of Ga droplets and open operation of As flux, and set up a multistep growth procedure by changing the intensity of As flux or growth temperature.

3.
Nanotechnology ; 32(36)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33902023

RESUMO

Theory is proposed for nanohole siliconpin/nipphotodetector (PD) physics, promising devices in the future data communications and lidar applications. Photons and carriers have wavelengths of 1µm and 5 nm, respectively. We propose vertical nanoholes having 2D periodicity with a feature size of 1µm will produce photons slower than those in bulk silicon, but carriers are unchanged. Close comparison to experiments validates this view. First, we study steady state nanohole PD current as a function of illumination power, and results are attributed to the voltage drop partitions in the PD and electrodes. Nanohole PD voltage drop depends on illumination, but series resistance voltage drop does not, and this explains experiments well. Next, we study transient characteristics for the sudden termination of light illumination. Nanohole PDs are much faster than flat PDs, and this is because the former produces much less slow diffusion minority carriers. In fact, most photons have already been absorbed in thei-layer in nanohole PDs, resulting in much less diffusion minority carriers at the bottom highly doped layer. Why diffusion in PDs is slow and that in bipolar junction transistors is quick is discussed in appendix.

4.
Small ; 16(11): e1906459, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072751

RESUMO

Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built-in nanohole arrays at deep-subwavelength scale (6 nm) is demonstrated using a two-step fabrication method. The nanohole arrays are formed first by the growth of a high-quality two-phase (i.e., Au-TiN) vertically aligned nanocomposite template, followed by selective wet-etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half-way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon-enhanced sensing applications.

5.
Nano Lett ; 17(5): 3145-3151, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28441500

RESUMO

Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.

6.
Nano Lett ; 14(12): 7195-200, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25380062

RESUMO

This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens.


Assuntos
Algoritmos , Cristalização/métodos , Lentes , Nanopartículas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Nanopartículas/ultraestrutura
7.
ACS Appl Mater Interfaces ; 16(15): 19672-19680, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576132

RESUMO

Traditional multilayer antireflection (AR) surfaces are of significant importance for numerous applications, such as laser optics, camera lenses, and eyeglasses. Recently, technological advances in the fabrication of biomimetic AR surfaces capable of delivering broadband omnidirectional high transparency combined with self-cleaning properties have opened an alternative route toward realization of multifunctional surfaces which would be beneficial for touchscreen displays or solar harvesting devices. However, achieving the desired surface properties often requires sophisticated lithography fabrication methods consisting of multiple steps. In the present work, we show the design and implementation of mechanically robust AR surfaces fabricated by a lithography-free process using thermally dewetted silver as an etching mask. Both-sided nanohole (NH) surfaces exhibit transmittance above 99% in the visible or the near-infrared ranges combined with improved angular response at an angle of incidence of up to θi = 60°. Additionally, the NHs demonstrate excellent mechanical resilience against repeated abrasion with cheesecloth due to favorable redistribution of the shearing mechanical forces, making them a viable option for touchscreen display applications.

8.
Ultramicroscopy ; 265: 114019, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094366

RESUMO

Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.

9.
Discov Nano ; 18(1): 145, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015329

RESUMO

The traditional method of monitoring the oxidation and reduction of biomedical materials usually relies on electrochemical (EC) measurement techniques. Here, we demonstrate a surface plasmon resonance (SPR) method to monitor the oxidation process. Using levodopa L-dopa as the target analyte, a nanohole sensing plate is embedded in the EC electrode to enhance the oxidation signal and generate SPR. Cyclic voltammetry (CV) measurement was first conducted to understand the baseline of EC response of L-Dopa. Then, the redox reactions were simultaneously monitored through SPR measurements during the CV voltage scan. The results showed that the limit of detection using traditional CV reached 1.47 µM while using EC-SPR, the limit of detection improved to 1.23 µM. Most importantly, we found a strong correlation between CV current profiles and the SPR reflection spectra. Our results facilitate detecting electrochemical reactions using an optical probing method.

10.
Adv Mater ; 35(13): e2207752, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773327

RESUMO

Graphene-based nanomaterials have sprung up as promising anode materials for sodium-ion batteries due to the intriguing properties of graphene itself and the synergic effect between graphene and active materials. However, the 2D graphene sheet only allows the rapid diffusion of sodium ions along the parallel direction while that of the vertical direction is difficult, limiting the rate capability of graphene-based electrode materials. To tackle this problem, pore-forming engineering has been employed to perforate graphene and concurrently achieve the in situ growth of Co3 Se4 nanoparticles. The generation of in-plane nanohole breaks through the physical barriers of the graphene nanosheets, enabling the fast diffusion of electrolyte ions in the longitudinal direction. In addition, this design limits the aggregation of Co3 Se4 nanoparticles because of the high affinity of Co3 Se4 on graphene. Benefiting from the high conductivity and fast ion transport bestowed by the ingenious architecture, the Co3 Se4 /holey graphene exhibits a remarkable rate performance of 519.5 mAh g-1 at 5.0 A g-1 and desirable cycle stability. Conclusions drawn from this investigation are that the transport of sodium inside the graphene-based composites is crucial for rate performance enhancement and this method is effective in modifying graphene-based nanomaterials as potential anode materials.

11.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677992

RESUMO

This article discusses the features of the synthesis and application of porous two-dimensional nanomaterials in developing conductometric gas sensors based on metal oxides. It is concluded that using porous 2D nanomaterials and 3D structures based on them is a promising approach to improving the parameters of gas sensors, such as sensitivity and the rate of response. The limitations that may arise when using 2D structures in gas sensors intended for the sensor market are considered.

12.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159725

RESUMO

Arrays of metal nano-holes have proved to be among of the most promising structures for applications in the field of nano-photonics and optoelectronics. Supporting both localized and propagating surface plasmons resonances, they are characterized by very high versatility thanks to the tunability of these modes, by means of the change of their periodicity, the size of the holes and metal composition. The interaction between different optical features can be exploited to modulate electromagnetic field distribution leading various hot-spots excitations on the metal surfaces. In this work, long range ordered arrays of nano-holes in thin gold films, with different geometrical characteristics, were fabricated by a modified nano-sphere lithography protocol, which allows precise control on holes' dimensions together with the preservation of the order and of the pristine periodicity of the array. An in-depth analysis of the correlation between surface plasmon modes interference and its effect on electromagnetic field distribution is proposed, both by numerical simulations and experimentally. Finally, metal nano-holes arrays are exploited for surface enhanced Raman experiments, evaluating and comparing their performances by the estimation of the enhancement factor. Values close to the single molecule detection are obtained for most of the samples, proving their potentialities in surface enhanced spectroscopy applications.

13.
J Colloid Interface Sci ; 627: 630-639, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35872420

RESUMO

It is a challenging task to research oxygen reduction electrocatalysts with cost-effectiveness, high-performance and ultra-stability to replace traditional noble metal catalysts in renewable energy conversion/storage devices. Herein, cobalt phosphide (Co2P) nanoparticles encapsulated in Mn, N co-doped porous carbon nanosheets with abundant nanoholes (Co2P/Mn,N-PCNS) were prepared by a alizarin complexone coordination regulated pyrolysis at 800 °C. In the controlled experiments, the pyrolysis temperature and metal types were investigated in details. The resultant catalyst exhibited rapid mass/charge transfer and superior oxygen reduction reaction (ORR) performance (Eonset = 0.96 V; E1/2 = 0.86 V vs RHE), surpassing commercial Pt/C. This work presents some constructive guidelines for synthesis of appealing ORR electrocatalysts in renewable energy technology.

14.
Open Res Eur ; 2: 142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38827276

RESUMO

Background: In classical electrodynamics, light-matter interactions are modelled using Maxwell equations. The solution of Maxwell equations, which is typically given by means of the electric and magnetic field, is vectorial in nature. Yet it is well known that light-matter interactions can be approximately described in a scalar (polarization independent) way for many optical applications. While the accuracy of the scalar approximation can be theoretically computed, to the best of our knowledge, it has never been determined experimentally. Here, we introduce Vortex Circular Dichroism ( VCD), an optical measurement that has the required features to assess the vectoriality of diffraction. Methods: VCD is measured as the differential transmission (or absorption) of left and right circularly polarized vortex beams. We test the VCD measurement with two different systems: i) an experimental set of single circular nano-apertures drilled in a gold film with diameters ranging from 150 to 1950 nm; and ii) a theoretical set of golden spheres with the same diameters as the nano-apertures. Results: We observe that in both systems, VCD > 0 for smaller diameters, VCD ≲ 0 for intermediate values and VCD ≈ 0 for larger values of the diameter. Furthermore, the simulations show that a diffraction process characterized by a VCD ≈ 0 ( VCD ≠ 0) is polarization-independent (polarization-dependent). As a result, we relate VCD ≠ 0 to a vectorial diffraction, and VCD ≈ 0 to a scalar one. Conclusions: Overall, our results show compelling evidence that it is possible to experimentally assess the scalar/vectorial regime of a diffraction process, and that the VCD technique possesses the required features to measure the vectoriality of diffraction processes involving plasmonic cylindrically symmetric structures.

15.
Methods Mol Biol ; 2394: 343-376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094337

RESUMO

We fabricated a novel single molecule nanosensor by integrating a solid-state nanopore and a double nanohole nanoaperture. The nanosensor employs Self-Induced Back-Action (SIBA) for optical trapping and enables SIBA-Actuated Nanopore Electrophoresis (SANE) for concurrent acquisition of bimodal optical and electrical signatures of molecular interactions. This work describes how to fabricate and use the SANE sensor to quantify antibody-ligand interactions. We describe how to analyze the bimodal optical-electrical data to improve upon the discrimination of antibody and ligand versus bound complex compared to electrical measurements alone. Example results for specific interaction detection are described for T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting Major Histocompatibility Complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells. We also describe how to analyze the bimodal optical-electrical data to discriminate between specific and non-specific interactions between antibodies and ligands. Example results for non-specific interactions are shown for cancer-irrelevant TCRmAbs targeting the same pMHCs, as a control. These example results demonstrate the utility of the SANE sensor as a potential screening tool for ligand targets in cancer immunotherapy, though we believe that its potential uses are much broader.


Assuntos
Nanoporos , Neoplasias , Eletroforese , Imunoterapia , Ligantes , Nanotecnologia/métodos
16.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578780

RESUMO

In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs' surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10-4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10-12 WHz-1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects.

17.
ACS Photonics ; 8(6): 1673-1682, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35445142

RESUMO

Plasmonic nanoapertures have found exciting applications in optical sensing, spectroscopy, imaging, and nanomanipulation. The subdiffraction optical field localization, reduced detection volume (~attoliters), and background-free operation make them particularly attractive for single-particle and single-molecule studies. However, in contrast to the high field enhancements by traditional "nanoantenna"-based structures, small field enhancement in conventional nanoapertures results in weak light-matter interactions and thus small enhancement of spectroscopic signals (such as fluorescence and Raman signals) of the analytes interacting with the nanoapertures. In this work, we propose a hybrid nanoaperture design termed "gold-nanoislands-embedded nanoaperture" (AuNIs-e-NA), which provides multiple electromagnetic "hotspots" within the nanoaperture to achieve field enhancements of up to 4000. The AuNIs-e-NA was able to improve the fluorescence signals by more than 2 orders of magnitude with respect to a conventional nanoaperture. With simple design and easy fabrication, along with strong signal enhancements and operability over variable light wavelengths and polarizations, the AuNIs-e-NA will serve as a robust platform for surface-enhanced optical sensing, imaging, and spectroscopy.

18.
ACS Appl Mater Interfaces ; 13(36): 43715-43725, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469103

RESUMO

An inverted pyramidal metasurface was designed, fabricated, and studied at the nanoscale level for the development of a label-free pathogen detection on a chip platform that merges nanotechnology and surface-enhanced Raman scattering (SERS). Based on the integration and synergy of these ingredients, a virus immunoassay was proposed as a relevant proof of concept for very sensitive detection of hepatitis A virus, for the first time to our best knowledge, in a very small volume (2 µL), without complex signal amplification, allowing to detect a minimal virus concentration of 13 pg/mL. The proposed work aims to develop a high-flux and high-accuracy surface-enhanced Raman spectroscopy (SERS) nanobiosensor for the detection of pathogens to provide an effective method for early and easy water monitoring, which can be fast and convenient.


Assuntos
Técnicas Biossensoriais/métodos , Vírus da Hepatite A/isolamento & purificação , Nanoporos , Análise Espectral Raman/métodos , Anticorpos Imobilizados/imunologia , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais/instrumentação , Ouro/química , Vírus da Hepatite A/imunologia , Imunoensaio/instrumentação , Imunoensaio/métodos , Estudo de Prova de Conceito , Análise Espectral Raman/instrumentação , Microbiologia da Água
19.
Adv Sci (Weinh) ; 7(8): 1902864, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328417

RESUMO

Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More-than-Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli-responsive polymer diode, based on a nanohole-nanowrinkle bi-interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low-cost and high-yield production method. Furthermore, the resulting device, with ternary and low-power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device-to-system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence.

20.
Adv Biosyst ; 4(12): e2000003, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815321

RESUMO

Extracellular vesicles (EVs)-nanoscale phospholipid vesicles secreted by cells-present new opportunities for molecular diagnosis from non-invasive liquid biopsies. Single EV protein analysis can be extremely valuable in studying EVs as circulating cancer biomarkers, but it is technically challenging due to weak detection signals associated with limited amounts of epitopes and small surface areas for antibody labeling. Here, a new, simple method that enables multiplexed analyses of EV markers with improved sensitivities is reported. Specifically, plasmon-enhanced fluorescence detection is implemented that amplifies fluorescence signals using surface plasmon resonances excited by periodic gold nanohole structures. It is shown that fluorescence signals in multiple channels are amplified by one order of magnitude, and both transmembrane and intravesicular markers can be detected at the single EV level. This approach can offer additional insight into understanding subtypes, heterogeneity, and production dynamics of EVs during disease development and progression.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Ressonância de Plasmônio de Superfície/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Células MCF-7 , Neoplasias/sangue , Neoplasias/diagnóstico , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA