RESUMO
SignificanceMolecules interacting with metallic nanostructures can show tunable exciton-plasmon coupling, ranging from weak to strong. One factor that influences the interactions is the spatial organization of the molecules relative to the localized plasmon-enhanced electromagnetic fields. In this work, we show that the arrangement of aromatic dye molecules can be tuned within plasmonic hotspots by interfacial engineering of nanoparticle surfaces. By controlling the local chemical and physical interactions, we could modulate lasing thresholds. Surface-functionalized plasmonic metasurfaces open prospects for programmable light-matter interactions at the nanoscale.
RESUMO
This paper reports how the spectral linewidths of plasmon resonances can be narrowed down to a few nanometers by optimizing the morphology, surface roughness, and crystallinity of metal nanoparticles (NPs) in two-dimensional (2D) lattices. We developed thermal annealing procedures to achieve ultranarrow surface lattice resonances (SLRs) with full-width at half-maxima linewidths as narrow as 4 nm from arrays of Au, Ag, Al, and Cu NPs. Besides annealing, we developed a chemical vapor deposition process to use Cu NPs as catalytic substrates for graphene growth. Graphene-encapsulated Cu NPs showed the narrowest SLR linewidths (2 nm) and were stable for months. These ultranarrow SLR nanocavity modes supported even narrower lasing emission spectra and high nonlinearity in the input-output light-light curves.
RESUMO
This paper reports hierarchical hybridization as a mode-mixing scheme to account for the unique optical properties of non-Bravais lattices of plasmonic nanoparticles (NPs). The formation of surface lattice resonances (SLRs) mediated by localized surface plasmons (LSPs) of different multipolar orders (dipole and quadrupole) can result in asymmetric electric near-field distributions surrounding the NPs. This asymmetry is because of LSP hybridization at the individual NP level from LSPs of different multipole order and at the unit cell level (NP dimer) from LSPs of the same multipole order. Fabricated honeycomb lattices of silver NPs exhibit ultrasharp SLRs at the Γ point that can also facilitate nanolasing. Modeling of the stimulated emission process revealed that the multipolar component of the lattice plasmon mode was responsible for feedback for lasing. By leveraging multipolar LSP responses in Al NP lattices, we achieved two distinct Γ point band-edge modes from a single honeycomb lattice. This work highlights how multipolar LSP coupling in plasmonic lattices with a non-Bravais symmetry has important implications for the design of SLRs and their associated plasmonic near-field distributions. These relatively unexplored degrees of freedom can decrease both ohmic and radiative losses in nanoscale systems and enable SLRs to build unanticipated connections among photonics and nanochemistry.
RESUMO
This paper reports a robust and stretchable nanolaser platform that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism. Increasing the size of metal nanoparticles in an array can introduce ultrasharp lattice plasmon resonances with out-of-plane charge oscillations that are tolerant to lateral strain. By patterning these nanoparticles onto an elastomeric slab surrounded by liquid gain, we realized reversible, tunable nanolasing with high strain sensitivity and no hysteresis. Our semiquantum modeling demonstrates that lasing build-up occurs at the hybrid quadrupole electromagnetic hot spots, which provides a route toward mechanical modulation of light-matter interactions on the nanoscale.
RESUMO
In this work, we experimentally demonstrate for the first time strong localization of surface plasmon polaritons (SPPs) at visible regime in metallic nanogratings with short-range correlated disorder. By increasing the degree of disorder, the confinement of SPPs is significantly enhanced, and the effective SPP propagation length dramatically shrinks. Strong localization of SPPs eventually emerges at visible regime, which is verified by the exponentially decayed fields and the vanishing autocorrelation function of the SPPs. Physically, the short-range correlated disorder induces strong interference among multiple scattered SPPs and provides an adequate fluctuation to effective permittivity, which leads to the localization effect. Our study demonstrates a unique opportunity for disorder engineering to manipulate light on nanoscale and may achieve various applications in random nanolasing, solar energy, and strong light-matter interactions.
RESUMO
We report on lasing at visible wavelengths in arrays of ferromagnetic Ni nanodisks overlaid with an organic gain medium. We demonstrate that by placing an organic gain material within the mode volume of the plasmonic nanoparticles both the radiative and, in particular, the high ohmic losses of Ni nanodisk resonances can be compensated. Under increasing pump fluence, the systems exhibit a transition from lattice-modified spontaneous emission to lasing, the latter being characterized by highly directional and sub-nanometer line width emission. By breaking the symmetry of the array, we observe tunable multimode lasing at two wavelengths corresponding to the particle periodicity along the two principal directions of the lattice. Our results are relevant for loss-compensated magnetoplasmonic devices and topological photonics.