Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 18(6): 2274-2284, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33926191

RESUMO

Nanoparticle vaccine delivery systems have been emerging strategies for inducing potent immune responses to prevent and treat infectious diseases and cancers. The properties of nanoparticle vaccine delivery systems, such as nanoparticle size, surface charge, and antigen release kinetics, have been extensively studied and proven to effectively influence the efficacy of vaccine responses. However, a few types of research have focused on the influence of administration routes of nanoparticle vaccines on immune responses. Herein, to investigate how the administration routes affect the immune responses of nanoparticles vaccines, we developed a nanoparticles system (NPs), in which the ovalbumin (OVA) and Angelica sinensis polysaccharide (ASP) were incorporated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles and the polyethylenimine (PEI) was coated on the surface of nanoparticles. The NPs vaccine was intramuscularly and subcutaneously injected (im and sc) into mice, and the immune responses induced by these two delivery routes were compared. The results showed that both im and sc administration of NPs vaccines elicited strong antigen-specific IgG, IgG1, and IgG2a antibody responses, with no significant difference. In contrast, NP vaccines with sc administration significantly enhanced immune responses, such as enhancing the recruitment and activation of dendritic cells (DCs) in lymph nodes (LNs), promoting the antigen transport into draining lymph nodes, increasing the secretion of cytokines, improving the ratio of CD4+T cells to CD8+ T cells, activating cytotoxic T lymphocyte response, and inducing a strong cellular immune response. These results may provide a new insight onto the development of vaccine delivery systems.


Assuntos
Adjuvantes Imunológicos/química , Angelica sinensis/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Polissacarídeos/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Imunogenicidade da Vacina , Injeções Intramusculares , Injeções Subcutâneas , Camundongos , Modelos Animais , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Polietilenoimina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polissacarídeos/administração & dosagem , Desenvolvimento de Vacinas , Vacinas de Subunidades Antigênicas/imunologia
2.
Methods Microbiol ; 50: 151-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38620863

RESUMO

The outbreak of the COVID-19 pandemic in 2019 has been one of the greatest challenges modern medicine and science has ever faced. It has affected millions of people around the world and altered human life and activities as we once knew. The high prevalence as well as an extended period of incubations which usually does not present with symptoms have played a formidable role in the transmission and infection of millions. A lot of research has been carried out on developing suitable treatment and effective preventive measures for the control of the pandemic. Preventive strategies which include social distancing, use of masks, washing of hands, and contact tracing have been effective in slowing the spread of the virus; however, the infectious nature of the SARS-COV-2 has made these strategies unable to eradicate its spread. In addition, the continuous increase in the number of cases and death, as well as the appearance of several variants of the virus, has necessitated the development of effective and safe vaccines in a bid to ensure that human activities can return to normalcy. Nanotechnology has been of great benefit in the design of vaccines as nano-sized materials have been known to aid the safe and effective delivery of antigens as well as serve as suitable adjuvants to potentiate responses to vaccines. There are only four vaccine candidates currently approved for use in humans while many other candidates are at various levels of development. This review seeks to provide updated information on the current nano-technological strategies employed in the development of COVID-19 vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA