Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
2.
Pharmacol Res ; 201: 107083, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309383

RESUMO

Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Doenças Metabólicas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Oligonucleotídeos Antissenso/uso terapêutico
3.
Biol Res ; 57(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217055

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Exossomos , Neomicina , Neomicina/toxicidade , Neomicina/metabolismo , Exossomos/metabolismo , Células Ciliadas Auditivas , Autofagia/fisiologia
4.
Mol Cell Neurosci ; 127: 103900, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714280

RESUMO

The zebrafish lateral line is a frequently used model to study the mechanisms behind peripheral neuronal innervation of sensory organs and the regeneration thereof. The lateral line system consists of neuromasts, a cluster of protruding hair cells, which are innervated by sensory afferent and modulatory efferent neurons. These flow-sensing hair cells are similar to the hair cells in the mammalian ear. Though, while hair cell loss in humans is irreversible, the zebrafish neuromasts are regarded as the fastest regenerating structure in vertebrates, making them an ideal model to study regeneration. However, one component of the lateral line system, the efferent projections, has largely been omitted in regenerative studies. Here, for the first time, we bring insights into the fate of efferent axons during ablation and regeneration of the hair cells in the zebrafish lateral line. Our behavioral analysis showed functional recovery of hair cells and sensory transmission within 48 h and their regeneration were in line with previous studies. Analysis of the inhibitory efferent projections revealed that in approximately half the cases the inhibitory efferent axons degenerated, which was never observed for the sensory afferent axons. Quantification of hair cells following ablation suggests that the presence of mature hair cells in the neuromast may prevent axon degeneration. Within 120 h, degenerated efferent axons regenerated along the axonal tract of the lateral line. Reanalysis of published single cell neuromast data hinted to a role for Bdnf in the survival of efferent axons. However, sequestering Bdnf, blocking the Trk-receptors, and inhibiting the downstream ERK-signaling, did not induce axon degeneration, indicating that efferent survival is not mediated through neurotrophic factors. To further explore the relation between hair cells and efferent projections, we generated atoh1a mutants, where mature hair cells never form. In larvae lacking hair cells, inhibitory efferent projections were still present, following the tract of the sensory afferent without displaying any innervation. Our study reveal the fate of efferent innervation following hair cell ablation and provide insights into the inherent differences in regeneration between neurons in the peripheral and central nervous system.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Humanos , Sistema da Linha Lateral/fisiologia , Fator Neurotrófico Derivado do Encéfalo , Axônios , Cabelo , Mamíferos
5.
Luminescence ; 39(3): e4709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491906

RESUMO

Fluorescent metal nanoclusters (MNCs) have found extensive application in recognizing molecular species. Here, orange-red fluorescent Arg-A. paniculata-MoNCs were synthesized using Andrographis paniculata leaf extract, arginine as a ligand, and MoCl5 as a metal precursor. The Arg-A. paniculata-MoNCs complex exhibited a quantum yield (QY) of 16.91% and excitation/emission wavelengths of 400/665 nm. The synthesized Arg-A. paniculata-MoNCs successfully acted as a probe for assaying neomycin sulphate (NS) via fluorescence turn-off and K+ ions via fluorescence turn-on mechanisms, respectively. Moreover, the developed probe was effectively used to develop a cellulose paper strip-based sensor for detection of NS and K+ ions. Arg-A. paniculata-MoNCs demonstrated great potential for sensing NS and K+ ions, with concentration ranges of 0.1-80 and 0.25-110 µM for NS and K+ ions, respectively. The as-synthesized Arg-A. paniculata-MoNCs efficiently detected NS and K+ ions in food and biofluid samples, respectively.


Assuntos
Corantes Fluorescentes , Molibdênio , Fluorescência , Íons , Espectrometria de Fluorescência
6.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
7.
Pharmacol Res ; 187: 106570, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423788

RESUMO

Hypercholesterolemia is a major driver of atherosclerosis, thus contributing to high morbidity and mortality worldwide. Gut microbiota have been identified as modulator of blood lipids including cholesterol levels. Few studies have already linked certain bacteria and microbial mechanisms to host cholesterol. However, in particular mouse models revealed conflicting results depending on genetics and experimental protocol. To gain further insights into the relationship between intestinal bacteria and host cholesterol metabolism, we first performed fecal 16S rRNA targeted metagenomic sequencing in a human cohort (n = 24) naïve for cholesterol lowering drugs. Here, we show alterations in the gut microbiota composition of hypercholesterolemic patients with depletion of Bifidobacteria, expansion of Clostridia and increased Firmicutes/Bacteroidetes ratio. To test whether pharmacological intervention in gut microbiota impacts host serum levels of cholesterol, we treated hypercholesterolemic Apolipoprotein E knockout with oral largely non-absorbable antibiotics. Antibiotics increased serum cholesterol, but only when mice were fed normal chow diet and cholesterol was measured in the random fed state. These elevations in cholesterol already occurred few days after treatment initiation and were reversible after stopping antibiotics with re-acquisition of intestinal bacteria. Gene expression analyses pointed to increased intestinal cholesterol uptake mediated by antibiotics in the fed state. Non-targeted serum metabolomics suggested that diminished plant sterol levels and reduced bile acid cycling were involved microbial mechanisms. In conclusion, our work further enlightens the link between gut microbiota and host cholesterol metabolism. Pharmacological disruption of the gut flora by antibiotics was able to exacerbate serum cholesterol and may impact cardiovascular disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Hipercolesterolemia , Animais , Humanos , Camundongos , Antibacterianos/efeitos adversos , Colesterol/metabolismo , Firmicutes , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/microbiologia , RNA Ribossômico 16S/genética
8.
BMC Biotechnol ; 22(1): 29, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221128

RESUMO

BACKGROUND: In the search for methods to biodegrade recalcitrant compounds, the use of saprotrophic fungi and white rot fungi, in particular belonging to the phylum Basidiomycota, has gained interest. This group of fungi possesses a battery of unspecific extracellular enzymes that can be utilized in the biodegradation of preferably phenolic compounds. In this work, it was investigated under which conditions the white rot fungus Trametes versicolor and the ericoid mycorrhizal fungus Rhizoscyphus ericae (belonging to the phylum Ascomycota) could be used to biodegrade the antibiotic aminoglycoside neomycin at co-metabolic conditions in which external nutrients were supplied. Furthermore, it was also investigated whether a biodegradation could be accomplished using neomycin as the sole nutrient. RESULTS: The results show that both species can biodegrade neomycin 70% under co-metabolic conditions during a one-week time course and that Rhizoscyphus ericae is able to use neomycin as sole nutrient and to approximatively biodegrade it 60% under chosen non co-metabolic conditions. At selected conditions, the biodegradation of neomycin using Rhizoscyphus ericae was monitored by oxidation products of D-ribose which is a hydrolysis product of neomycin. CONCLUSION: The results are of general interest in the search for fungal species that can biodegrade recalcitrant compounds without the need of external nutrients. The key future application area that will be investigated is purification of waste from recombinant protein production in which neomycin, nutrients and E. coli with neomycin resistance genes are present.


Assuntos
Micorrizas , Antibacterianos/metabolismo , Ascomicetos , Biodegradação Ambiental , Escherichia coli , Micorrizas/metabolismo , Neomicina/metabolismo , Proteínas Recombinantes/metabolismo , Ribose/metabolismo , Trametes
9.
Pharmacol Res ; 177: 106129, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151859

RESUMO

Long-term stress causes hyperalgesia; and there are gender differences in the mechanism of pain in male and female individuals. The role of gut microbiota in pain has also been verified. However, whether gut microbiota plays a role in hyperalgesia caused by chronic restraint stress (CRS) with gender differences has not been explored. This study investigated the role of gut microbiota in CRS-induced hyperalgesia gender-specifically through 16 S ribosomal RNA (16 S rRNA) gene sequencing and untargeted metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS). The study found that both male and female mice experienced hyperalgesia after CRS and antibiotic treatment. 16 S rRNA gene sequencing reveals gender differences in the fecal microbiota induced by CRS. The pain threshold decreased after transplanting the fecal microbiota from the male and female CRS group to the corresponding pseudo-germ-free mice. In addition, this study detected gender differences in the host gut microbiota and serum metabolism induced by fecal microbiota transplantation (FMT). Specifically, the different serum metabolites between the pseudo-germ-free mice receiving FMT from the CRS group and those from the control group were mainly involved in bile secretion and steroid hormone biosynthesis for male mice, and in taurine and hypotaurine metabolism and tryptophan metabolism for female mice. In summary, the gut microbiota participates in stress-induced hyperalgesia (SIH) with gender differences by influencing the host's gut microbiota composition and serum metabolism. Therefore, our findings provided insights into developing novel gut microbiota-associated drugs for the management of gender-specific SIH.


Assuntos
Microbioma Gastrointestinal , Animais , Transplante de Microbiota Fecal , Fezes , Feminino , Microbioma Gastrointestinal/fisiologia , Hiperalgesia , Masculino , Camundongos , Dor
10.
Pharmacol Res ; 183: 106377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926806

RESUMO

Spinal cord injury (SCI) can change the intestinal microbiota pattern and corresponding metabolites, which in turn affect the prognosis of SCI. Among many metabolites, short-chain fatty acids (SCFAs) are critical for neurological recovery after SCI. Recent research has shown that resveratrol exerts anti-inflammatory properties. But it is unknown if the anti-inflammatory properties of resveratrol are associated with intestinal microbiota and metabolites. We thus investigate the alteration in gut microbiota and the consequent change of SCFAs following resveratrol treatment. The SCI mouse models with retention of gut microbiota (donor) and depletion of gut microbiota (recipient) were established. Fecal microbiota transplantation from donors to recipients was performed with intragastrical administration. Spinal cord tissues of mice were examined by H&E, Nissl, and immunofluorescence stainings. The expressions of the inflammatory profile were examined by qPCR and cytometric bead array. Fecal samples of mice were collected and analyzed with 16S rRNA sequencing. The results showed that resveratrol inhibited the microglial activation and promoted the functional recovery of SCI. The analysis of intestinal microbiota and metabolites indicated that SCI caused dysbiosis and the decrease in butyrate, while resveratrol restored microbiota pattern, reversed intestinal dysbiosis, and increased the concentration of butyrate. Both fecal supernatants from resveratrol-treated donors and butyrate suppressed the expression of pro-inflammatory genes in BV2 microglia. Our result demonstrated that fecal microbiota transplantation from resveratrol-treated donors had beneficial effects on the functional recovery of SCI. One mechanism of resveratrol effects was to restore the disrupted gut microbiota and butyrate.


Assuntos
Microbioma Gastrointestinal , Traumatismos da Medula Espinal , Animais , Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Disbiose , Ácidos Graxos Voláteis/metabolismo , Camundongos , Microglia/metabolismo , RNA Ribossômico 16S , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico
11.
Inflamm Res ; 71(3): 309-320, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35190853

RESUMO

OBJECTIVE: Hair cells in the inner ear have been demonstrated to be sensitive to the ototoxicity from some beneficial pharmaceutical drugs. This study aimed to explore the role of protein arginine methyltransferase 6 (PRMT6) in the process of neomycin-induced hearing loss and the underlying mechanism. METHODS: The neomycin-induced hearing loss mouse model and hair cell injury in vitro model were established. We took advantage of the HEI-OC1 cell line to evaluate PRMT6 expression in neomycin-induced hair cells, and the effect of PRMT6 on mitochondrial function and FoxG1 arginine methylation. Apoptotic cells were assessed and apoptotic marker cleaved caspase-3 level was detected. Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were subsequently measured. RESULT: The result showed that PRMT6 was significantly upregulated in neomycin-induced HEI-OC-1 cells, and PRMT6 silencing prevented MMP loss, reduced ROS production, as well as decreased cell apoptosis under neomycin treatment. Further results showed that FoxG1 was downregulated in neomycin-induced HEI-OC-1 cells, and PRMT6 promoted the FoxG1-mediated luciferase activity, while PRMT6 silencing reversed this effect. Mechanistic experiments revealed that PRMT6 silencing reduced the arginine methylation level of FoxG1 protein. In vivo, neomycin-induced upregulation of hearing thresholds and increased cell apoptosis, whereas PRMT6 inhibitor partly reversed these effects. CONCLUSION: Our findings suggested that inhibition of PRMT6 reduced neomycin-induced inner ear hair cell injury through the restraint of FoxG1 arginine methylation.


Assuntos
Arginina , Neomicina , Animais , Apoptose , Arginina/metabolismo , Arginina/farmacologia , Fatores de Transcrição Forkhead/genética , Cabelo/metabolismo , Células Ciliadas Auditivas/metabolismo , Metilação , Camundongos , Neomicina/metabolismo , Neomicina/toxicidade , Proteínas do Tecido Nervoso/metabolismo
12.
Fish Shellfish Immunol ; 127: 148-154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714896

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Animais , Infecções por Vírus de DNA/veterinária , Peixes , Glutationa , Iridoviridae/genética , Neomicina/farmacologia
13.
Bioorg Chem ; 126: 105824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636122

RESUMO

Despite their clinical importance, saving numerous human lifes, over- and mis-uses of antibiotics have created a strong selective pressure on bacteria, which induces the emergence of (multi)resistant strains. Antibioresistance is becoming so pregnant that since 2017, WHO lists bacteria threatening most human health (AWaRe, ESKAPE lists), and those for which new antibiotics are urgently needed. Since the century turn, this context is leading to a burst in the chemical synthesis of new antibiotics, mostly derived from natural antibiotics. Among them, aminoglycosides, and especially the neomycin family, exhibit broad spectrum of activity and remain clinically useful drugs. Therefore, numerous endeavours have been undertaken to modify aminoglycosides with the aim of overcoming bacterial resistances. After having replaced antibiotic discovery into an historical perspective, briefly surveyed the aminoglycoside mode of action and the associated resistance mechanisms, this review emphasized the chemical syntheses performed on the neomycin family and the corresponding structure activity relationships in order to reveal the really efficient modifications able to convert neomycin and its analogues into future drugs. This review would help researchers to strategically design novel aminoglycoside derivatives for the development of clinically viable drug candidates.


Assuntos
Infecções Bacterianas , Neomicina , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Bactérias , Humanos , Neomicina/química , Neomicina/farmacologia , Paromomicina/química , Paromomicina/farmacologia
14.
Arch Insect Biochem Physiol ; 110(1): e21871, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150449

RESUMO

The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 µg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.


Assuntos
Drosophila melanogaster , Drosophila , Aminoglicosídeos/toxicidade , Animais , Drosophila/genética , Drosophila melanogaster/genética , Audição/genética , Larva
15.
Luminescence ; 37(11): 1953-1963, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071675

RESUMO

Two simple, sensitive, and low-cost fluorescence spectroscopy methods for neomycin (NEO) detection were developed. Both methods were based on the interaction between NEO and Congo red (CR) in acidic buffer medium to form an ion-association complex. The quenching effect of the formed ion-association complex on the fluorescence of CR at 421 nm is a basic principle of fluorescence analysis, whilst the resonance Rayleigh scattering (RRS) method was used to enhance the resonance Rayleigh scattering spectrum at 384 nm by adding NEO. Experimental conditions such as pH, temperature, reaction time, CR concentration, and the ionic strength of the two methods were investigated and optimized. In addition, the effect of common coexisting substances on the method was tested and the results showed good selectivity. The composition of ion-association complexes, the reaction mechanism, and reasons for the enhanced intensity of RRS are discussed. Under optimum conditions, the responses of the fluorescence spectrophotometry and RRS methods showed good linearity with NEO concentrations in the range 0.2-3.0 µg ml-1 and 0.1-3.0 µg ml-1 , respectively. The detection limits of fluorescence spectrophotometry and RRS spectroscopy techniques were 0.02 µg ml-1 and 0.01 µg ml-1 , respectively. Finally, the two methods were applied to the analysis of wastewater and the results were satisfactory.


Assuntos
Vermelho Congo , Neomicina , Neomicina/análise , Vermelho Congo/química , Espectrometria de Fluorescência/métodos , Águas Residuárias/análise , Espalhamento de Radiação
16.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232332

RESUMO

The cell wall integrity pathway (CWI) is a MAPK-mediated signaling route essential for yeast cell response to cell wall damage, regulating distinct aspects of fungal physiology. We have recently proven that the incorporation of a genetic circuit that operates as a signal amplifier into this pathway allows for the identification of novel elements involved in CWI signaling. Here, we show that the strong growth inhibition triggered by pathway hyperactivation in cells carrying the "Integrity Pathway Activation Circuit" (IPAC) also allows the easy identification of new stimuli. By using the IPAC, we have found various chemical agents that activate the CWI pathway, including the aminoglycoside neomycin. Cells lacking key components of this pathway are sensitive to this antibiotic, due to the disruption of signaling upon neomycin stimulation. Neomycin reduces both phosphatidylinositol-4,5-bisphosphate (PIP2) availability at the plasma membrane and myriocin-induced TORC2-dependent Ypk1 phosphorylation, suggesting a strong interference with plasma membrane homeostasis, specifically with PIP2. The neomycin-induced transcriptional profile involves not only genes related to stress and cell wall biogenesis, but also to amino acid metabolism, reflecting the action of this antibiotic on the yeast ribosome.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Fosfatos de Inositol/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neomicina/farmacologia , Fosfatidilinositóis/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Physiol Mol Biol Plants ; 28(4): 719-735, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592484

RESUMO

Insect wounding activates a large number of signals that function coordinately to modulate gene expression and elicit defense responses. How each signal influences gene expression in absence of wounding is also important since it can shed light on changes occurring during the shift to wound response. Using simulated Helicoverpa armigera herbivory on chickpea, we had identified at least 14 WRKY genes that showed 5-50 fold increase in expression within 5-20 min of wounding. Our studies show that contrary to their collective effects upon wounding, individual chemical cues show distinct and often opposite effects in absence of wounding. In particular, jasmonic acid, a key early defense hormone, reduced transcripts of most WRKY genes by > 50% upon treatment of unwounded chickpea leaves as did salicylic acid. Neomycin (a JA biosynthesis inhibitor) delayed and also reduced early wound expression. H2O2 transiently activated several genes within 5-20 min by 5-8 fold while ethylene activated only a few WRKY genes by 2-5 fold. The summation of the individual effects of these chemical cues does not explain the strong increase in transcript levels upon wounding. Detailed studies of a 931 nt region of the CaWRKY41 promoter, show strong wound-responsive GUS expression in Arabidopsis even in presence of neomycin. Surprisingly its expression was lost in the coi1, ein2 and myc2myc3myc4 mutant backgrounds suggesting the requirement of intact ethylene and JA signaling pathways (dependent on MYCs) for wound-responsive expression. The studies highlight the complexity of gene regulation by different chemical cues in the presence and absence of wounding. Supplementary Information: The online version contains Supplementary material available at 10.1007/s12298-022-01170-y.

18.
Saudi Pharm J ; 30(12): 1700-1709, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601499

RESUMO

Skin, largest organ of human, is directly exposed to environment and hence is prone to high rates of injuries and microbial infections. Over the passage of time these microbes have developed resistance to antibiotics making them ineffective especially in lower doses and hence, higher dosages or new drugs are required. The current study deals with designing of nano-emulsion (NE) formulations composed of garlic and ginger oils (0.1 %) with neomycin sulphate used in different ratios (0.001, 0.01 and 0.1 %) and combinations. The resulting NEs were characterized for droplet size (145-304 nm), zetapotential (-3.0-0.9 mV), refractive index (1.331-1.344), viscosity (1.10-1.23cP), transmittance (96-99 %), FT-IR and HPLC and found stable over a period of three months. All NEs were also found effective against both gram positive and negative bacterial strains i.e., B. spizizenii, S. aureus, E. coli and S. enterica as compared to pure neomycin sulphate (NS) used as control with highest activity recorded for NE-2 and NE-4 against all strains showing zone of inhibition in range of 22-30 mm and 21-19 mm, respectively. NEs were also tested using rabbit skin excision wound model which potentiates that all the NEs resulted in early recovery with 86-100 % wound healing achieved in 9 days as compared to NS ointment (71 %). The studies confirmed that essential oils when used in combination with traditional drug can lead to much higher efficacies as compared to pure drugs.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33257452

RESUMO

Recently, a complete genome sequence of Mycoplasma bovirhinis HAZ141_2 was published showing the presence of a 54-kB prophage-like region. Bioinformatic analysis revealed that this region has a more than 40% GC content and a chimeric organization with three structural elements-a prophage continuous region, a restriction-modification cassette, and a highly transmittable aadE-sat4-aphA-3 gene cluster found in both Gram-positive and Gram-negative bacteria. It is known that aadE confers resistance to streptomycin, sat4 governs resistance to streptothricin/nourseothricin, and aphA-3 is responsible for resistance to kanamycin and structurally related antibiotics. An aadE-like (aadE*) gene of strain HAZ141_2 encodes a 228-amino acid (aa) polypeptide whose carboxy-terminal domain (positions 44 to 206) is almost identical to that of a functional 302-aa AadE (positions 140 to 302). Transcription analysis of the aadE*-sat4-aphA-3 genes showed their cotranscription in M. bovirhinis HAZ141_2. Moreover, a common promoter for aadE*-sat4-aphA-3 was mapped upstream of aadE* using 5' rapid amplification of cDNA ends analysis. Determination of MICs to aminoglycosides and nourseothricin revealed that M. bovirhinis HAZ141_2 is highly resistant to kanamycin and neomycin (≥512 µg/ml). However, MICs to streptomycin (64 µg/ml) and nourseothricin (16 to 32 µg/ml) were similar to those identified in the prophageless M. bovirhinis type strain PG43 and Israeli field isolate 316981. We cloned the aadE*-sat4-aphA-3 genes into a low-copy-number vector and transferred them into antibiotic-sensitive Escherichia coli cells. While the obtained E. coli transformants were highly resistant to kanamycin, neomycin, and nourseothricin (MICs, ≥256 µg/ml), there were no changes in MICs to streptomycin, suggesting a functional defect of the aadE*.


Assuntos
Canamicina , Prófagos , Antibacterianos/farmacologia , Escherichia coli , Genômica , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Canamicina/farmacologia , Família Multigênica , Mycoplasma , Neomicina
20.
RNA Biol ; 18(4): 457-467, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32882151

RESUMO

Gene regulation in prokaryotes often depends on RNA elements such as riboswitches or RNA thermometers located in the 5' untranslated region of mRNA. Rearrangements of the RNA structure in response, e.g., to the binding of small molecules or ions control translational initiation or premature termination of transcription and thus mRNA expression. Such structural responses are amenable to computational modelling, making it possible to rationally design synthetic riboswitches for a given aptamer. Starting from an artificial aptamer, we construct the first synthetic transcriptional riboswitches that respond to the antibiotic neomycin. We show that the switching behaviour in vivo critically depends not only on the sequence of the riboswitch itself, but also on its sequence context. We therefore developed in silico methods to predict the impact of the context, making it possible to adapt the design and to rescue non-functional riboswitches. We furthermore analyse the influence of 5' hairpins with varying stability on neomycin riboswitch activity. Our data highlight the limitations of a simple plug-and-play approach in the design of complex genetic circuits and demonstrate that detailed computational models significantly simplify, improve, and automate the design of transcriptional circuits. Our design software is available under a free licence on GitHub (https://github.com/xileF1337/riboswitch_design).


Assuntos
Clonagem Molecular/métodos , Biologia Computacional/métodos , Neomicina/química , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Genes Reporter/genética , Neomicina/farmacologia , Conformação de Ácido Nucleico , RNA Bacteriano/análise , RNA Bacteriano/química , RNA Bacteriano/genética , Software , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA