Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2363-2373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899101

RESUMO

Lacustrine wetlands have long-term carbon storage capacity and contribute significantly to regional carbon cycle, but it is unclear how its carbon sinks respond to climate change. We measured soil heterotrophic respiration carbon emissions (CO2 and CH4), vegetation carbon sequestration, and related environmental factors (temperature, water level, etc.) of five kinds of natural swamps (Phragmites marsh-L, Carex schmidtii marsh-C, Rhododendron capitatum swamp-D, Betula fruticose swamp-H, Larix olgensis swamp-LT)by using static chamber gas chromatography and relative growth equation methods, along the water environmental gradients from lakeside to highlands in Yuanchi of Changbai Mountains. We quantified the carbon source/sink function (CSS) and global warming potential (GWP) of various swamp types by estimating ecosystem net carbon balance, and revealed the variation patterns and formation mechanisms of CSS and GWP along the environmental gradients, aiming to explore the response of carbon source/sink of lakeside wetland in high altitude area to climate change. The results showed that marshes (L and C) were weak sources (-1.018 and -0.090 t C·hm-1·a-1) at the lower habitats of the water environment gradient, shrub swamps (D and H) were strong or weak sinks (1.956 and 0.239 t C·hm-1·a-1) at the middle habitats, forest swamp (LT) was strong source (-3.214 t C·hm-1·a-1) at the upper habitat. The spatial changes were promoted by water level and suppressed by soil temperature. For GWP, strong thermal radiation for marshes (from 44.682 to 59.282 t CO2·hm-1·a-1), cold radiation for shrub swamps (from -0.920 to -7.008 t CO2·hm-1·a-1), and weak thermal radiation for forest swamp (11.668 t CO2·hm-1·a-1), and their GWP was only promoted by soil temperature. Under current climate change background, marshes and forest swamp at both ends of the water environment gradient from lakeside to highlands played a positive feedback effect due to the increases of CH4 or CO2 emissions, while the middle shrub swamp still maintained a negative feedback effect in Yuanchi located the high-altitude area of the temperate Changbai Mountains.


Assuntos
Ecossistema , Áreas Alagadas , Carbono/análise , Dióxido de Carbono/análise , Estações do Ano , Solo , China , Água/análise , Metano/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36293810

RESUMO

The carbon sequestration of food crops is of great significance to slow down agricultural greenhouse gas emissions in agricultural production and management. This paper analyzes the dynamic change and regional differences of net carbon sequestration of food crops from temporal and spatial perspectives for the case study area of the Yangtze River economic belt (YREB) in China. We use the calculation formula of carbon sequestration and carbon emission to calculate the net carbon sequestration in the Yangtze River economic belt. On this basis, we analyze the dynamic trend and regional differences of net carbon sequestration in the Yangtze River economic belt. Furthermore, we use the Gini coefficient to measure the quantitative gap of net carbon sequestration of grain crops in different regions of the Yangtze River economic belt. The results show that: (1) from 2000-2018, the net carbon sequestration of food crops keeps rising within the studied area, while the carbon emission shows a fluctuating downward trend; (2) remarkable regional differences in the net carbon sequestration of food crops have occurred, and most provinces (cities) show an upward trend for the studied area; (3) the unequitable distribution of net carbon sequestration of food crops is clearly displayed in the upper, middle, and lower reaches of the studied area. Moreover, the most uneven place is located on the lower reaches, and the least uneven place is in the upper reaches. These findings are important points of reference for reducing the carbon emissions of the agricultural industry in the Yangtze River economic belt of China and in China more generally.


Assuntos
Gases de Efeito Estufa , Rios , Sequestro de Carbono , Desenvolvimento Econômico , Cidades , Carbono/análise , China
3.
PeerJ ; 8: e9128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435542

RESUMO

BACKGROUND: Labile carbon input could stimulate soil organic carbon (SOC) mineralization through priming effect, resulting in soil carbon (C) loss. Meanwhile, labile C could also be transformed by microorganisms in soil as the processes of new C sequestration and stabilization. Previous studies showed the magnitude of priming effect could be affected by soil depth and nitrogen (N). However, it remains unknown how the soil depth and N availability affect the amount and stability of the new sequestrated C, which complicates the prediction of C dynamics. METHODS: A 20-day incubation experiment was conducted by adding 13C labeled glucose and NH4NO3 to study the effects of soil depth and nitrogen addition on the net C sequestration. SOC was fractioned into seven fractions and grouped into three functional C pools to assess the stabilization of the new sequestrated C. RESULTS: Our results showed that glucose addition caused positive priming in both soil depths, and N addition significantly reduced the priming effect. After 20 days of incubation, deep soil had a higher C sequestration potential (48% glucose-C) than surface soil (43% glucose-C). The C sequestration potential was not affected by N addition in both soil depths. Positive net C sequestration was observed with higher amount of retained glucose-C than that of stimulated mineralized SOC for both soil depths. The distribution of new sequestrated C in the seven fractions was significantly affected by soil depth, but not N addition. Compared to deep soil, the new C in surface soil was more distributed in the non-protected C pool (including water extracted organic C, light fraction and sand fraction) and less distributed in the clay fraction. These results suggested that the new C in deep soil was more stable than that in surface soil. Compared to the native SOC for both soil depths, the new sequestrated C was more distributed in non-protected C pool and less distributed in biochemically protected C pool (non-hydrolyzable silt and clay fractions). The higher carbon sequestration potential and stability in deep soil suggested that deep soil has a greater role on C sequestration in forest ecosystems.

4.
MethodsX ; 6: 1753-1773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413948

RESUMO

The real emission mitigation by the ecological restoration projects depends upon the integrated effect of all greenhouse gas (GHG) budgets rather than the carbon sequestration alone. However, a comprehensive and robust methodology for estimating the relevant GHG budgets and net mitigation of China's ecological restoration projects is still urgently to await development. Based on the methods from IPCC and statistical data of the management practices under the projects, we constructed a methodology for carbon accounting and determining net mitigation for ecological restoration projects in China (CANM-EP). GHG emissions generated from different processes and practices of the projects were included in the CANM-EP, and by this methodology, carbon sequestration, GHG balance changes induced by ecological response, on-site and off-site GHG emissions could be estimated. Therefore, the CANM-EP provides comprehensive methods to estimate the whole GHG budgets as well as the net mitigation of China's ecological restoration projects. •The CANM-EP provides accounting methods for comprehensive processes and management practices under respective ecological restoration projects in China.•The CANM-EP could simultaneously estimate carbon sequestration and GHG emissions of the projects.•The CANM-EP indicates net carbon sequestration and net contribution of China's ecological restoration projects to climate change mitigation.

5.
Ying Yong Sheng Tai Xue Bao ; 28(2): 673-688, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29749178

RESUMO

Forests play an important role in climate change mitigation and concentration of CO2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm-2·a-1, while that of forest protection is 0.33-5.20 t C·hm-2·a-1. At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.


Assuntos
Sequestro de Carbono , Gases de Efeito Estufa , Carbono , China , Florestas , Efeito Estufa
6.
Ying Yong Sheng Tai Xue Bao ; 27(6): 1693-1707, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29737675

RESUMO

Based on the estimation of carbon cost from afforestation in project boundary and carbon leakage out of boundary in the construction period of "Grain for Green" Program (GGP) (2000-2010), the annual variance and composition of the carbon cost and carbon leakage, as well as characters of variance of net carbon sequestration were analyzed for GGP and respective program regions. Results showed that the carbon costs in northwest region, southwest region, northeast region, north region and central south and east region were 3.38, 3.64, 1.03, 1.66 and 4.38 Tg C, respectively, totaling 14.09 Tg C. Meanwhile the carbon leakages of the above regions were 21.33, 4.60, 5.50, 1.32 and 3.78 Tg C, respectively, and 36.53 Tg C in total. The composition characters of the carbon costs of the GGP and the respective regions were similar. Carbon emissions from afforestation were the largest carbon cost, and afforestation on converted farmland was the main carbon emission source. Accordingly, among the materials consumed, fertilizer brought about the largest carbon cost, followed by building materials, while carbon emissions from fuels, irrigation, herbicides and pesticides only accounted for about 10% for respective regions. The carbon cost and carbon leakage of the GGP were 50.62 Tg C in total, which counteracted 19.9% of the sequestered carbon in the program. In northwest region, southwest region, northeast region, north region and central south and east region, carbon emissions (including cost and leakage) accounted for 38.9%, 10.4%, 26.1%, 8.9% and 15.5% of the carbon sequestration, respectively. The net carbon sequestration of the GGP was 203.50 Tg C with an annual average of 18.50 Tg C·a-1. The carbon cost and leakage offset a minor part of the carbon sequestration of the GGP. Therefore, the GGP contributed significantly to greenhouse gas mitigation in China as well as global climate warming mitigation. Adopting precision fertilization in economic forest afforestation and supplying alternative livelihoods to farmers in the program could be the potential measures to reduce carbon cost and carbon leakage.


Assuntos
Sequestro de Carbono , Florestas , Gases de Efeito Estufa , Agricultura , Carbono , China , Grão Comestível , Fertilizantes , Aquecimento Global
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA