Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Genes Dev ; 35(23-24): 1642-1656, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819353

RESUMO

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Cromatina , Histonas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Proto-Oncogênicas
2.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812208

RESUMO

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Assuntos
Doença de Alzheimer , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Humanos , Camundongos , Animais , Idoso , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Doença de Alzheimer/metabolismo , Envelhecimento/metabolismo , RNA/metabolismo , Mamíferos/genética
3.
Bioessays ; 45(7): e2300019, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166059

RESUMO

Just over 20 years ago, molecular biologists Leonie Ringrose and Renato Paro published an article with a provocative title, "Remembering Silence", in BioEssays. The article focused on how epigenetic elements could return to their silent state, operationally defined as their epigenetic status before their modulation by experimental or environmental factors. Though Ringrose and Paro's article was on fruit flies and factors affecting embryological growth, the article asked a question of considerable importance to rapidly expanding research in neuroepigenetics on the correlation between trauma and neuropsychiatric risk: If you experience a traumatic event and, as a result, acquire an epigenetic trait that is considered pathological, can you free yourself of that trait? Ultimately, we are interested in how a return to silence is envisioned in neuroepigenetics research, how interventions purported to bring about that silence might function, and what this might mean for people who live in the aftermath of trauma.


Assuntos
Memória Epigenética , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia
4.
J Neurosci ; 43(13): 2398-2423, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36849418

RESUMO

The severity of Alzheimer's disease (AD) progression involves a complex interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT)-mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Here, we report a novel RNA binding function for Tip60 in addition to its HAT function. We show that Tip60 preferentially interacts with pre-mRNAs emanating from its chromatin neural gene targets in the Drosophila brain and this RNA binding function is conserved in human hippocampus and disrupted in Drosophila brains that model AD pathology and in AD patient hippocampus of either sex. Since RNA splicing occurs co-transcriptionally and alternative splicing (AS) defects are implicated in AD, we investigated whether Tip60-RNA targeting modulates splicing decisions and whether this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq datasets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs are identified as bona-fide Tip60-RNA targets that are enriched for in the AD-gene curated database, with some of these AS alterations prevented against by increasing Tip60 in the fly brain. Further, human orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60's splicing function in AD pathogenesis. Our results support a novel RNA interaction and splicing regulatory function for Tip60 that may underly AS impairments that hallmark AD etiology.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) has recently emerged as a hotbed for RNA alternative splicing (AS) defects that alter protein function in the brain yet causes remain unclear. Although recent findings suggest convergence of epigenetics with co-transcriptional AS, whether epigenetic dysregulation in AD pathology underlies AS defects remains unknown. Here, we identify a novel RNA interaction and splicing regulatory function for Tip60 histone acetyltransferase (HAT) that is disrupted in Drosophila brains modeling AD pathology and in human AD hippocampus. Importantly, mammalian orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brain. We propose that Tip60-mediated AS modulation is a conserved critical posttranscriptional step that may underlie AS defects now characterized as hallmarks of AD.


Assuntos
Doença de Alzheimer , Proteínas de Drosophila , Animais , Humanos , Doença de Alzheimer/metabolismo , Proteínas de Drosophila/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Alternativo/genética , DNA Recombinante/metabolismo , Drosophila/fisiologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Mamíferos
5.
Mol Cell Neurosci ; 125: 103825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842544

RESUMO

Drug addiction is a leading cause of disability worldwide, with more than 70,000 Americans dying from drug overdose in 2019 alone. While only a small percentage of chronic drug users escalate to drug addiction, little is understood on the precise mechanisms of this susceptibility. Early life adversity is causally relevant to adult psychiatric disease and may contribute to the risk of addiction. Here we review recent pre-clinical evidence showing that early life exposure to stress and/or drugs regulates changes in behavior, gene expression, and the epigenome that persist into adulthood. We summarize the major findings and gaps in the preclinical literature, highlighting studies that demonstrate the often profound differences between female and male subjects.


Assuntos
Experiências Adversas da Infância , Transtornos Relacionados ao Uso de Substâncias , Humanos , Masculino , Feminino , Epigênese Genética/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia
6.
J Neurosci ; 42(42): 7984-8001, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36109165

RESUMO

Environmental factors and life experiences impinge on brain circuits triggering adaptive changes. Epigenetic regulators contribute to this neuroadaptation by enhancing or suppressing specific gene programs. The paralogous transcriptional coactivators and lysine acetyltransferases CREB binding protein (CBP) and p300 are involved in brain plasticity and stimulus-dependent transcription, but their specific roles in neuroadaptation are not fully understood. Here we investigated the impact of eliminating either CBP or p300 in excitatory neurons of the adult forebrain of mice from both sexes using inducible and cell type-restricted knock-out strains. The elimination of CBP, but not p300, reduced the expression and chromatin acetylation of plasticity genes, dampened activity-driven transcription, and caused memory deficits. The defects became more prominent in elderly mice and in paradigms that involved enduring changes in transcription, such as kindling and environmental enrichment, in which CBP loss interfered with the establishment of activity-induced transcriptional and epigenetic changes in response to stimulus or experience. These findings further strengthen the link between CBP deficiency in excitatory neurons and etiopathology in the nervous system.SIGNIFICANCE STATEMENT How environmental conditions and life experiences impinge on mature brain circuits to elicit adaptive responses that favor the survival of the organism remains an outstanding question in neurosciences. Epigenetic regulators are thought to contribute to neuroadaptation by initiating or enhancing adaptive gene programs. In this article, we examined the role of CREB binding protein (CBP) and p300, two paralogous transcriptional coactivators and histone acetyltransferases involved in cognitive processes and intellectual disability, in neuroadaptation in adult hippocampal circuits. Our experiments demonstrate that CBP, but not its paralog p300, plays a highly specific role in the epigenetic regulation of neuronal plasticity gene programs in response to stimulus and provide unprecedented insight into the molecular mechanisms underlying neuroadaptation.


Assuntos
Proteína de Ligação a CREB , Epigênese Genética , Masculino , Feminino , Camundongos , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Acetilação , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
7.
Anal Bioanal Chem ; 415(9): 1627-1639, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754872

RESUMO

Histone proteins are essential to the regulation of the eukaryotic genome. Histone post-translational modifications (PTMs) and single-molecule combinations of these modifications (proteoforms) allow for the regulation of many DNA-templated processes, most notably transcription. Histone H4 is a part of the core histone octamer, which packages DNA into nucleosomes. Top-down proteomics allows for the inquiry of the epigenetic landscape with proteoform-level specificity. Although these approaches are well-demonstrated ex vivo, our knowledge of in vivo histone proteoform biology remains sparse. Here, we demonstrate the first in vivo quantitative top-down analysis of histone H4 and analyze the forebrains and hindbrains of differently aged mice. This reveals novel differences between the mouse forebrain and hindbrain and region-specific changes during adolescence in histone H4 PTMs and proteoforms. At 25 days of age (P25), histone H4 of the hindbrain is more acetylated than the forebrain. At 47 days of age (P47), there are fewer significant differences in histone H4 PTMs and their combinations between regions. Histone H4 of the forebrain is more acetylated in P47 than in P25 forebrains. Hindbrains exhibit the opposite difference with histone H4 of the P25 hindbrain being more acetylated than that of P47 hindbrains. These differences are mainly driven by less abundant hyperacetylated proteoforms. Transcription of histone acetyltransferases such as p300, CBP, and HAT1 is known to be higher in cortical neurons, consistent with the observed acetylation levels. Lysine 20 methylation (K20me1, K20me2, and K20me3) is notably invariant with brain region and age difference.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Histonas/metabolismo , Metilação , DNA/metabolismo , Encéfalo/metabolismo , Acetilação
8.
Adv Exp Med Biol ; 1360: 117-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505167

RESUMO

The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Neurogênese/genética , Proteínas Nucleares/metabolismo
9.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293143

RESUMO

For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.


Assuntos
Diferenciação Sexual , Cromossomo Y , Feminino , Masculino , Animais , Diferenciação Sexual/genética , Cromossomos Sexuais/genética , Cromossomos Sexuais/metabolismo , Caracteres Sexuais , Hormônios Gonadais/metabolismo , Encéfalo/metabolismo , Epigênese Genética , Cromossomo X
10.
Hist Philos Life Sci ; 44(4): 65, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417009

RESUMO

What sets someone on a life trajectory? This question is at the heart of studies of 21st-century neurosciences that build on scientific models developed over the last 150 years that attempt to link psychopathology risk and human development. Historically, this research has documented persistent effects of singular, negative life experiences on people's subsequent development. More recently, studies have documented neuromolecular effects of early life adversity on life trajectories, resulting in models that frame lives as disproportionately affected by early negative experiences. This view is dominant, despite little evidence of the stability of the presumably early-developed molecular traits and their potential effects on phenotypes. We argue that in the context of gaps in knowledge and the need for scientists to reason across molecular and phenotypic scales, as well as time spans that can extend beyond an individual's life, specific interpretative frameworks shape the ways in which individual scientific findings are assessed. In the process, scientific reasoning oscillates between understandings of cellular homeostasis and organisms' homeorhesis, or life trajectory. Biologist and historian François Jacob described this framework as the "attitude" that researchers bring to bear on their "objects" of study. Through an analysis of, first, historical and contemporary scientific literature and then ethnographic research with neuroscientists, we consider how early life trauma came to be associated with specific psychological and neurobiological effects grounded in understandings of life trajectories. We conclude with a consideration of the conceptual, ontological, and ethical implications of interpreting life trajectories as the result of the persistence of long-embodied biological traits, persistent life environments, or both.


Assuntos
Conhecimento , Neurobiologia , Humanos , Antropologia Cultural , Princípios Morais , Lógica
11.
Am J Physiol Cell Physiol ; 318(2): C282-C288, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747316

RESUMO

The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 µM, a promoter of F-actin stabilization), or latrunculin-B (1 µM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.


Assuntos
Actinas/metabolismo , Epigênese Genética/fisiologia , Neurônios/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Epigênese Genética/genética , Feminino , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 38(27): 6090-6101, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29875269

RESUMO

Nerve injury-induced hyperactivity of primary sensory neurons in the dorsal root ganglion (DRG) contributes to chronic pain development, but the underlying epigenetic mechanisms remain poorly understood. Here we determined genome-wide changes in DNA methylation in the nervous system in neuropathic pain. Spinal nerve ligation (SNL), but not paclitaxel treatment, in male Sprague Dawley rats induced a consistent low-level hypomethylation in the CpG sites in the DRG during the acute and chronic phases of neuropathic pain. DNA methylation remodeling in the DRG occurred early after SNL and persisted for at least 3 weeks. SNL caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands, in introns, intergenic regions, and repetitive sequences. In contrast, SNL caused more gains of methylation in the spinal cord and prefrontal cortex. The DNA methylation changes in the injured DRGs recapitulated developmental reprogramming at the neonatal stage. Methylation reprogramming was correlated with increased gene expression variability. A diet deficient in methyl donors induced hypomethylation and pain hypersensitivity. Intrathecal administration of the DNA methyltransferase inhibitor RG108 caused long-lasting pain hypersensitivity. DNA methylation reprogramming in the DRG thus contributes to nerve injury-induced chronic pain. Restoring DNA methylation may represent a new therapeutic approach to treat neuropathic pain.SIGNIFICANCE STATEMENT Epigenetic mechanisms are critically involved in the transition from acute to chronic pain after nerve injury. However, genome-wide changes in DNA methylation in the nervous system and their roles in neuropathic pain development remain unclear. Here we used digital restriction enzyme analysis of methylation to quantitatively determine genome-wide DNA methylation changes caused by nerve injury. We showed that nerve injury caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands in the dorsal root ganglion. Reducing DNA methylation induced pain hypersensitivity, whereas increasing DNA methylation attenuated neuropathic pain. These findings extend our understanding of the epigenetic mechanism of chronic neuropathic pain and suggest new strategies to treat nerve injury-induced chronic pain.


Assuntos
Dor Crônica/metabolismo , Metilação de DNA/fisiologia , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Animais , Dor Crônica/genética , Epigênese Genética/genética , Gânglios Espinais/lesões , Masculino , Neuralgia/genética , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 38(19): 4569-4583, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29654189

RESUMO

Cognitive decline is a debilitating hallmark during preclinical stages of Alzheimer's disease (AD), yet the causes remain unclear. Because histone acetylation homeostasis is critical for mediating epigenetic gene control throughout neuronal development, we postulated that its misregulation contributes to cognitive impairment preceding AD pathology. Here, we show that disruption of Tip60 histone acetlytransferase (HAT)/histone deacetylase 2 (HDAC2) homeostasis occurs early in the brain of an AD-associated amyloid precursor protein (APP) Drosophila model and triggers epigenetic repression of neuroplasticity genes well before Aß plaques form in male and female larvae. Repressed genes display enhanced HDAC2 binding and reduced Tip60 and histone acetylation enrichment. Increasing Tip60 in the AD-associated APP brain restores Tip60 HAT/HDAC2 balance by decreasing HDAC2 levels, reverses neuroepigenetic alterations to activate synaptic plasticity genes, and reinstates brain morphology and cognition. Such Drosophila neuroplasticity gene epigenetic signatures are conserved in male and female mouse hippocampus and their expression and Tip60 function is compromised in hippocampus from AD patients. We suggest that Tip60 HAT/HDAC2-mediated epigenetic gene disruption is a critical initial step in AD that is reversed by restoring Tip60 in the brain.SIGNIFICANCE STATEMENT Mild cognitive impairment is a debilitating hallmark during preclinical stages of Alzheimer's disease (AD), yet its causes remain unclear. Although recent findings support elevated histone deacetylase 2 (HDAC2) as a cause for epigenetic repression of synaptic genes that contribute to cognitive deficits, whether alterations in histone acetlytransferase (HAT) levels that counterbalance HDAC2 repressor action occur and the identity of these HATs remain unknown. We demonstrate that disruption of Tip60 HAT/HDAC2 homeostasis occurs early in the AD Drosophila brain and triggers epigenetic repression of neuroplasticity genes before Aß plaques form. Increasing Tip60 in the AD brain restores Tip60 HAT/HDAC2 balance, reverses neuroepigenetic alterations to activate synaptic genes, and reinstates brain morphology and cognition. Our data suggest that disruption of the Tip60 HAT/HDAC2 balance is a critical initial step in AD.


Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/terapia , Repressão Epigenética/genética , Histona Desacetilase 2/genética , Lisina Acetiltransferase 5/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Idoso de 80 Anos ou mais , Animais , Drosophila melanogaster , Feminino , Homeostase/genética , Homeostase/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Placa Amiloide/genética , Placa Amiloide/prevenção & controle , Olfato
14.
Bipolar Disord ; 21(2): 108-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506611

RESUMO

OBJECTIVES: This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS: The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS: Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS: This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.


Assuntos
Transtorno Bipolar/metabolismo , Ritmo Gama/fisiologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Canais de Cálcio/metabolismo , Epigênese Genética , Humanos , Neurônios/metabolismo , Neurônios/patologia
15.
Curr Neurol Neurosci Rep ; 19(10): 72, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31440934

RESUMO

PURPOSE OF REVIEW: In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS: Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.


Assuntos
Epigênese Genética/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Sinapses/fisiologia , Animais , Metilação de DNA , Humanos , Doenças Neurodegenerativas/metabolismo
16.
Crit Rev Biochem Mol Biol ; 51(3): 185-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26915423

RESUMO

Over the past decade, since epigenetic mechanisms were first implicated in memory formation and synaptic plasticity, dynamic DNA methylation reactions have been identified as integral to long-term memory formation, maintenance, and recall. This review incorporates various new findings that DNA methylation mechanisms are important regulators of non-Hebbian plasticity mechanisms, suggesting that these epigenetic mechanisms are a fundamental link between synaptic plasticity and metaplasticity. Because the field of neuroepigenetics is so young and the biochemical tools necessary to probe gene-specific questions are just now being developed and used, this review also speculates about the direction and potential of therapeutics that target epigenetic mechanisms in the central nervous system and the unique pharmacokinetic and pharmacodynamic properties that epigenetic therapies may possess. Mapping the dynamics of the epigenome in response to experiential learning, even a single epigenetic mark in isolation, remains a significant technical and bioinformatic hurdle facing the field, but will be necessary to identify changes to the methylome that govern memory-associated gene expression and effectively drug the epigenome.


Assuntos
Metilação de DNA , Epigênese Genética , Memória , Animais , Metilação de DNA/efeitos dos fármacos , Descoberta de Drogas , Epigênese Genética/efeitos dos fármacos , Genômica , Humanos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
17.
J Neurosci ; 37(45): 10773-10782, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118205

RESUMO

Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.


Assuntos
Epigênese Genética/genética , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Epigenômica , Humanos
18.
Curr Genomics ; 19(8): 638-652, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30532644

RESUMO

Epigenetic processes during early brain development can function as 'developmental switches' that contribute to the stability of long-term effects of early environmental influences by programming central feedback mechanisms of the HPA axis and other neural networks. In this thematic review, we summarize accumulated evidence for a dual-activation of stress-related and sensory networks underlying the epigenetic programming effects of early life stress. We discuss findings indicating epigenetic programming of stress-related genes with impact on HPA axis function, the interaction of epigenetic mechanisms with neural activity in stress-related neural networks, epigenetic effects of glucocorticoid exposure, and the impact of stress on sensory development. Based on these findings, we propose that the combined activation of stress-related neural networks and stressor-specific sensory networks leads to both neural and hormonal priming of the epigenetic machinery, which sensitizes these networks for developmental programming effects. This allows stressor-specific adaptations later in life, but may also lead to functional mal-adaptations, depending on timing and intensity of the stressor. Finally, we discuss methodological and clinical implications of the dual-activation hypothesis. We emphasize that, in addition to modifications in stress-related networks, we need to account for functional modifications in sensory networks and their epigenetic underpinnings to elucidate the long-term effects of early life stress.

19.
BMC Genomics ; 18(1): 250, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335720

RESUMO

BACKGROUND: DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. RESULTS: To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. CONCLUSIONS: Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes.


Assuntos
Encéfalo/fisiologia , Metilação de DNA , Potenciação de Longa Duração/genética , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/genética , Adulto , Encéfalo/metabolismo , Cromatina/metabolismo , Ilhas de CpG/genética , Regulação da Expressão Gênica , Loci Gênicos/genética , Histonas/metabolismo , Humanos , Memória/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos
20.
J Neurochem ; 140(4): 613-628, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27935040

RESUMO

The brain adapts to dynamic environmental conditions by altering its epigenetic state, thereby influencing neuronal transcriptional programs. An example of an epigenetic modification is protein methylation, catalyzed by protein arginine methyltransferases (PRMT). One member, Prmt8, is selectively expressed in the central nervous system during a crucial phase of early development, but little else is known regarding its function. We hypothesize Prmt8 plays a role in synaptic maturation during development. To evaluate this, we used a proteome-wide approach to characterize the synaptic proteome of Prmt8 knockout versus wild-type mice. Through comparative network-based analyses, proteins and functional clusters related to neurite development were identified to be differentially regulated between the two genotypes. One interesting protein that was differentially regulated was tenascin-R (TNR). Chromatin immunoprecipitation demonstrated binding of PRMT8 to the tenascin-r (Tnr) promoter. TNR, a component of perineuronal nets, preserves structural integrity of synaptic connections within neuronal networks during the development of visual-somatosensory cortices. On closer inspection, Prmt8 removal increased net formation and decreased inhibitory parvalbumin-positive (PV+) puncta on pyramidal neurons, thereby hindering the maturation of circuits. Consequently, visual acuity of the knockout mice was reduced. Our results demonstrated Prmt8's involvement in synaptic maturation and its prospect as an epigenetic modulator of developmental neuroplasticity by regulating structural elements such as the perineuronal nets.


Assuntos
Epigênese Genética/fisiologia , Rede Nervosa/fisiologia , Proteína-Arginina N-Metiltransferases/deficiência , Proteoma/biossíntese , Sinapses/metabolismo , Animais , Aprendizagem por Discriminação/fisiologia , Feminino , Redes Reguladoras de Genes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína-Arginina N-Metiltransferases/genética , Proteoma/genética , Sinapses/genética , Córtex Visual/citologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA