Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.294
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2316306121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408255

RESUMO

Music is powerful in conveying emotions and triggering affective brain mechanisms. Affective brain responses in previous studies were however rather inconsistent, potentially because of the non-adaptive nature of recorded music used so far. Live music instead can be dynamic and adaptive and is often modulated in response to audience feedback to maximize emotional responses in listeners. Here, we introduce a setup for studying emotional responses to live music in a closed-loop neurofeedback setup. This setup linked live performances by musicians to neural processing in listeners, with listeners' amygdala activity was displayed to musicians in real time. Brain activity was measured using functional MRI, and especially amygdala activity was quantified in real time for the neurofeedback signal. Live pleasant and unpleasant piano music performed in response to amygdala neurofeedback from listeners was acoustically very different from comparable recorded music and elicited significantly higher and more consistent amygdala activity. Higher activity was also found in a broader neural network for emotion processing during live compared to recorded music. This finding included observations of the predominance for aversive coding in the ventral striatum while listening to unpleasant music, and involvement of the thalamic pulvinar nucleus, presumably for regulating attentional and cortical flow mechanisms. Live music also stimulated a dense functional neural network with the amygdala as a central node influencing other brain systems. Finally, only live music showed a strong and positive coupling between features of the musical performance and brain activity in listeners pointing to real-time and dynamic entrainment processes.


Assuntos
Música , Música/psicologia , Encéfalo/fisiologia , Emoções/fisiologia , Tonsila do Cerebelo/fisiologia , Afeto , Imageamento por Ressonância Magnética , Percepção Auditiva/fisiologia
2.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37985180

RESUMO

The necessity of conscious awareness in human learning has been a long-standing topic in psychology and neuroscience. Previous research on non-conscious associative learning is limited by the low signal-to-noise ratio of the subliminal stimulus, and the evidence remains controversial, including failures to replicate. Using functional MRI decoded neurofeedback, we guided participants from both sexes to generate neural patterns akin to those observed when visually perceiving real-world entities (e.g., dogs). Importantly, participants remained unaware of the actual content represented by these patterns. We utilized an associative DecNef approach to imbue perceptual meaning (e.g., dogs) into Japanese hiragana characters that held no inherent meaning for our participants, bypassing a conscious link between the characters and the dogs concept. Despite their lack of awareness regarding the neurofeedback objective, participants successfully learned to activate the target perceptual representations in the bilateral fusiform. The behavioral significance of our training was evaluated in a visual search task. DecNef and control participants searched for dogs or scissors targets that were pre-cued by the hiragana used during DecNef training or by a control hiragana. The DecNef hiragana did not prime search for its associated target but, strikingly, participants were impaired at searching for the targeted perceptual category. Hence, conscious awareness may function to support higher-order associative learning. Meanwhile, lower-level forms of re-learning, modification, or plasticity in existing neural representations can occur unconsciously, with behavioral consequences outside the original training context. The work also provides an account of DecNef effects in terms of neural representational drift.


Assuntos
Neurorretroalimentação , Masculino , Feminino , Humanos , Animais , Cães , Aprendizagem , Inconsciência , Estado de Consciência , Condicionamento Clássico , Imageamento por Ressonância Magnética
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904080

RESUMO

Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed: 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.


Assuntos
Cognição , Neurorretroalimentação , Desempenho Psicomotor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Adulto Jovem , Método Simples-Cego , Cognição/fisiologia , Adulto , Desempenho Psicomotor/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologia
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38889442

RESUMO

Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (ß = -4.36, P < 0.001) and neuropsychological function (ß = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (ß = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.


Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Neurorretroalimentação/métodos , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/fisiopatologia , Resultado do Tratamento , Eletroencefalografia/métodos
5.
Neuroimage ; 290: 120575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479461

RESUMO

Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Treino Cognitivo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
6.
Eur J Neurosci ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193617

RESUMO

Arterial spin labelling (ASL) is the only non-invasive technique that allows absolute quantification of perfusion and is increasingly used in brain activation studies. Contrary to the blood oxygen level-dependent (BOLD) effect ASL measures the cerebral blood flow (CBF) directly. However, the ASL signal has a lower signal-to-noise ratio (SNR), than the BOLD signal, which constrains its utilization in neurofeedback studies. If successful, ASL neurofeedback can be used to aid in the rehabilitation of health conditions with impaired blood flow, for example, stroke. We provide the first ASL-based neurofeedback study incorporating a double-blind, sham-controlled design. A pseudo-continuous ASL (pCASL) approach with background suppression and 3D GRASE readout was combined with a real-time post-processing pipeline. The real-time pipeline allows to monitor the ASL signal and provides real-time feedback on the neural activity to the subject. In total 41 healthy adults (19-56 years) divided into three groups underwent a neurofeedback-based emotion imagery training of the left anterior insula. Two groups differing only in the explicitness level of instruction received real training and a third group received sham feedback. Only those participants receiving real feedback with explicit instruction showed significantly higher absolute CBF values in the trained region during neurofeedback than participants receiving sham feedback. However, responder analyses of percent signal change values show no differences in activation between the three groups. Persisting limitations, such as the lower SNR, confounding effects of arterial transit time and partial volume effects still impact negatively the implementation of ASL neurofeedback.

7.
Hum Brain Mapp ; 45(9): e26767, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923184

RESUMO

Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neurorretroalimentação , Córtex Sensório-Motor , Humanos , Eletroencefalografia/métodos , Adulto , Masculino , Neurorretroalimentação/métodos , Adulto Jovem , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Feminino
8.
Artigo em Inglês | MEDLINE | ID: mdl-39322825

RESUMO

Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).

9.
Proc Biol Sci ; 291(2016): 20232908, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351803

RESUMO

Neural responses to sensory inputs can scale with the likelihood of encountering the input. This is consistent with the predictive coding framework, in that the human brain is expected to be less responsive to predicted inputs. Typically, however, prediction is not explicitly measured. It is inferred from the probability of encountering an event. When an input is explicitly predicted, responses to predicted inputs can be enhanced. Here, we ask if this effect can be ascribed to a generic priming effect, from pre-cogitating about one of two possible inputs. Consistent with this, we find that P300s (a relatively late event-related potential measured with electroencephalography) are greater for explicitly predicted audio and visual inputs, and that this effect cannot be distinguished from a priming effect from pre-imagining audio or visual presentations. Evidence indicates that participants engaged in pre-imagining presentations, as we were able to decode online what type of presentation (audio or visual) they were imagining with a high success rate (approx. 73%), and we encouraged compliance with neuro-feedback regarding this success rate. Our data confirm that human cortex can be more responsive to inputs that have been subject to pre-cogitation-including explicit predictions. This highlights that while anticipatory processes can reduce responding to likely inputs, they can also enhance responding to explicitly predicted inputs.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Retroalimentação , Encéfalo/fisiologia , Mapeamento Encefálico , Probabilidade
10.
Psychol Med ; 54(4): 675-686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964437

RESUMO

BACKGROUND: Binge-eating disorder (BED) co-occurs with neurobehavioral alterations in the processing of disorder-relevant content such as visual food stimuli. Whether neurofeedback (NF) directly targeting them is suited for treatment remains unclear. This study sought to determine feasibility and estimate effects of individualized, functional near-infrared spectroscopy-based real-time NF (rtfNIRS-NF) and high-beta electroencephalography-based NF (EEG-NF), assuming superiority over waitlist (WL). METHODS: Single-center, assessor-blinded feasibility study with randomization to rtfNIRS-NF, EEG-NF, or WL and assessments at baseline (t0), postassessment (t1), and 6-month follow-up (t2). NF comprised 12 60-min food-specific rtfNIRS-NF or EEG-NF sessions over 8 weeks. Primary outcome was the binge-eating frequency at t1 assessed interview-based. Secondary outcomes included feasibility, eating disorder symptoms, mental and physical health, weight management-related behavior, executive functions, and brain activity at t1 and t2. RESULTS: In 72 patients (intent-to-treat), the results showed feasibility of NF regarding recruitment, attrition, adherence, compliance, acceptance, and assessment completion. Binge eating improved at t1 by -8.0 episodes, without superiority of NF v. WL (-0.8 episodes, 95% CI -2.4 to 4.0), but with improved estimates in NF at t2 relative to t1. NF was better than WL for food craving, anxiety symptoms, and body mass index, but overall effects were mostly small. Brain activity changes were near zero. CONCLUSIONS: The results show feasibility of food-specific rtfNIRS-NF and EEG-NF in BED, and no posttreatment differences v. WL, but possible continued improvement of binge eating. Confirmatory and mechanistic evidence is warranted in a double-blind randomized design with long-term follow-up, considering dose-response relationships and modes of delivery.


Assuntos
Transtorno da Compulsão Alimentar , Bulimia , Neurorretroalimentação , Humanos , Transtorno da Compulsão Alimentar/terapia , Neurorretroalimentação/métodos , Obesidade , Espectroscopia de Luz Próxima ao Infravermelho , Eletroencefalografia , Resultado do Tratamento
11.
Psychol Med ; 54(8): 1651-1660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38131344

RESUMO

BACKGROUND: The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. METHODS: Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. RESULTS: Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. CONCLUSIONS: Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.


Assuntos
Tonsila do Cerebelo , Transtorno da Personalidade Borderline , Eletroencefalografia , Imageamento por Ressonância Magnética , Neurorretroalimentação , Humanos , Transtorno da Personalidade Borderline/terapia , Transtorno da Personalidade Borderline/fisiopatologia , Neurorretroalimentação/métodos , Feminino , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Adulto , Masculino , Adulto Jovem , Estudo de Prova de Conceito , Terapia Comportamental/métodos
12.
Exp Brain Res ; 242(6): 1253-1265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691137

RESUMO

We examined whether the alpha-band coherence between the T7-Fz (verbal analytical-motor planning) brain areas were related to superior performance in sports. We searched for related papers across eight databases: ProQuest Central, ProQuest Psychology Journals, PsycARTICLES, PsycINFO, SPORTDiscus, MEDLINE, Scopus, and Web of Science using relevant keywords (i.e., EEG AND sports AND coherence). Seven studies, with a total of 194 participants, met our inclusion criteria and were shortlisted for statistical analysis. We compared EEG coherence data for both within-subject and between-subject experimental designs. Our analysis revealed that athletes had lower coherence in the T7-Fz brain pathway for alpha- band activation (Hedges' g = - 0.54; p = 0.03) when performing better. Theoretically, these results corroborate the notion that athletes become more "neurally efficient" as the verbal and motor areas of their brains function more independently, i.e., the neural efficiency hypothesis. Accordingly, athletes who can limit verbal interference are more likely to perform a sporting task successfully.


Assuntos
Ritmo alfa , Desempenho Atlético , Humanos , Ritmo alfa/fisiologia , Desempenho Atlético/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Desempenho Psicomotor/fisiologia
13.
Cereb Cortex ; 33(24): 11447-11455, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750349

RESUMO

The sense of agency is a fundamental aspect of human self-consciousness, whose neural correlates encompass widespread brain networks. Research has explored the neuromodulatory properties of the sense of agency with noninvasive brain stimulation, which induces exogenous manipulations of brain activity; however, it is unknown whether endogenous modulation of the sense of agency is also achievable. We investigated whether the sense of agency can be self-regulated with electroencephalography-based neurofeedback. We conducted 2 experiments in which healthy humans performed a motor task while their motor control was artificially disrupted, and gave agency statements on their perceived control. We first identified the electrophysiological response to agency processing, and then applied neurofeedback in a parallel, sham-controlled design, where participants learnt to self-modulate their sense of agency. We found that behavioral measures of agency and performance on the task decreased with the increasing disruption of control. This was negatively correlated with power spectral density in the theta band, and positively correlated in the alpha and beta bands, at central and parietal electrodes. After neurofeedback training of central theta rhythms, participants improved their actual control over the task, and this was associated with a significant decrease in the frequency band trained via neurofeedback. Thus, self-regulation of theta rhythms can improve sensory-guided behavior.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/fisiologia , Controle Comportamental , Eletroencefalografia/métodos , Ritmo Teta/fisiologia , Encéfalo
14.
Cereb Cortex ; 33(11): 6573-6584, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36600612

RESUMO

Neurofeedback training using electroencephalogram (EEG)-based brain-computer interfaces (BCIs) combined with mental rehearsals of motor behavior has demonstrated successful self-regulation of motor cortical excitability. However, it remains unclear whether the acquisition of skills to voluntarily control neural excitability is accompanied by structural plasticity boosted by neurofeedback. Here, we sought short-term changes in cortical structures induced by 30 min of BCI-based neurofeedback training, which aimed at the regulation of sensorimotor rhythm (SMR) in scalp EEG. When participants performed kinesthetic motor imagery of right finger movement with online feedback of either event-related desynchronisation (ERD) of SMR magnitude from the contralateral sensorimotor cortex (SM1) or those from other participants (i.e. placebo), the learning rate of SMR-ERD control was significantly different. Although overlapped structural changes in gray matter volumes were found in both groups, significant differences revealed by group-by-group comparison were spatially different; whereas the veritable neurofeedback group exhibited sensorimotor area-specific changes, the placebo exhibited spatially distributed changes. The white matter change indicated a significant decrease in the corpus callosum in the verum group. Furthermore, the learning rate of SMR regulation was correlated with the volume changes in the ipsilateral SM1, suggesting the involvement of interhemispheric motor control circuitries in BCI control tasks.


Assuntos
Neurorretroalimentação , Córtex Sensório-Motor , Humanos , Neurorretroalimentação/fisiologia , Imaginação/fisiologia , Eletroencefalografia , Córtex Sensório-Motor/fisiologia , Imagens, Psicoterapia
15.
Scand J Med Sci Sports ; 34(1): e14540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987156

RESUMO

Sensorimotor rhythm (SMR) activity has been associated with automaticity and flow in motor execution. Studies have revealed that neurofeedback training (NFT) of the SMR can improve sports performance; however, few studies have adequately explored the effects of a single session of such NFT or examined the possible mechanisms underlying these effects on sports performance. This study recruited 44 professional golfers to address these gaps in the literature. A crossover design was employed to determine the order of the participation in the NFT and no-training control conditions. The participants were asked to perform 60 10-foot putts while electroencephalograms (EEGs) were recorded before and after the tasks. In pre-and post-tests, visual analog scales were used to assess the psychological states associated with SMR activities including the levels of attention engagement, conscious motor control, and physical relaxation. The results revealed that a single NFT session effectively increased SMR power and improved putting performance compared with the control condition. The subjective assessments also revealed that the participants reported lower attention engagement, less conscious control of the motor details and were more relaxed in the putting task, suggesting that SMR NFT promoted effortless and quiescent mental states during motor preparation for a putting task. This study aligns with theoretical hypotheses and extends current knowledge by revealing that a single session of SMR NFT can effectively enhance SMR power and improve putting performance in professional golfers. It also provides preliminary evidence of the possible underlying mechanisms that drive the effect of SMR NFT on putting performances.


Assuntos
Desempenho Atlético , Neurorretroalimentação , Humanos , Atenção , Eletroencefalografia , Neurorretroalimentação/métodos , Exame Físico , Estudos Cross-Over
16.
BMC Geriatr ; 24(1): 639, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085795

RESUMO

BACKGROUND: This study aimed to investigate the effects of neurofeedback training (NFT) on alpha activity in quantitative electroencephalography (QEEG), cognitive function, and speech perception in elderly with presbycusis. METHODS: This study was conducted from June 15 to November 30, 2020. The experimental group (n = 28) underwent NFT, while the control group (n = 31) was instructed to continue with their routine daily life. The NFT conducted for 40 min, two times a week, for a total of 16 sessions and was performed using Neuroharmony S and BrainHealth 2.7. The alpha activity was measured as alpha waves using QEEG. The cognitive function was measured using the Korean version of Mini-Mental Status Examination, digit span forward and backward (DSF and DSB). The speech perception was measured using the word and sentence recognition score (WRS and SRS) using an audiometer with the Korean Standard Monosyllabic Word Lists for Adults. RESULTS: The experimental group demonstrated improvement in the alpha wave of the left frontal lobe measured as alpha activity (t=-2.521, p = .018); MMSE-K (t=-3.467, p < .01), and DSF (t=-2.646, p < .05) measured as cognitive function; and WRS (t=-3.255, p = .003), and SRS (t=-2.851, p = .008) measured as speech perception compared to the control group. CONCLUSIONS: This study suggests that NFT could be considered an effective cognitive and auditory rehabilitation method based on brain and cognitive science for improving alpha activity, cognitive function, and speech perception.


Assuntos
Cognição , Eletroencefalografia , Neurorretroalimentação , Presbiacusia , Percepção da Fala , Humanos , Masculino , Feminino , Idoso , Cognição/fisiologia , Percepção da Fala/fisiologia , Eletroencefalografia/métodos , Presbiacusia/fisiopatologia , Presbiacusia/reabilitação , Presbiacusia/diagnóstico , Presbiacusia/psicologia , Presbiacusia/terapia , Neurorretroalimentação/métodos , Ritmo alfa/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-39221769

RESUMO

AIM: A new closed-loop functional magnetic resonance imaging method called multivoxel neuroreinforcement has the potential to alleviate the subjective aversiveness of exposure-based interventions by directly inducing phobic representations in the brain, outside of conscious awareness. The current study seeks to test this method as an intervention for specific phobia. METHODS: In a randomized, double-blind, controlled single-university trial, individuals diagnosed with at least two (one target, one control) animal subtype-specific phobias were randomly assigned (1:1:1) to receive one, three, or five sessions of multivoxel neuroreinforcement in which they were rewarded for implicit activation of a target animal representation. Amygdala response to phobic stimuli was assessed by study staff blind to target and control animal assignments. Pretreatment to posttreatment differences were analyzed with a two-way repeated-measures anova. RESULTS: A total of 23 participants (69.6% female) were randomized to receive one (n = 8), three (n = 7), or five (n = 7) sessions of multivoxel neuroreinforcement. Eighteen (n = 6 each group) participants were analyzed for our primary outcome. After neuroreinforcement, we observed an interaction indicating a significant decrease in amygdala response for the target phobia but not the control phobia. No adverse events or dropouts were reported as a result of the intervention. CONCLUSION: Results suggest that multivoxel neuroreinforcement can specifically reduce threat signatures in specific phobia. Consequently, this intervention may complement conventional psychotherapy approaches with a nondistressing experience for patients seeking treatment. This trial sets the stage for a larger randomized clinical trial to replicate these results and examine the effects on real-life exposure. CLINICAL TRIAL REGISTRATION: The now-closed trial was prospectively registered at ClinicalTrials.gov with ID NCT03655262.

18.
J Korean Med Sci ; 39(9): e94, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38469966

RESUMO

BACKGROUND: To evaluate the therapeutic effectiveness and safety of a neurofeedback wearable device for stress reduction. METHODS: A randomized, double-blind, controlled study was designed. Participants had psychological stress with depression or sleep disturbances. They practiced either neurofeedback-assisted meditation (n = 20; female, 15 [75.0%]; age, 49.40 ± 11.76 years) or neurofeedback non-assisted meditation (n = 18; female, 11 [61.1%]; age, 48.67 ± 12.90 years) for 12 minutes twice a day for two weeks. Outcome variables were self-reported questionnaires, including the Korean version of the Perceived Stress Scale, Beck Depression Inventory-II, Insomnia Severity Index, Pittsburgh Sleep Quality Index, and State Trait Anxiety Index, quantitative electroencephalography (qEEG), and blood tests. Satisfaction with device use was measured at the final visit. RESULTS: The experimental group had a significant change in PSS score after two weeks of intervention compared with the control group (6.45 ± 0.95 vs. 3.00 ± 5.54, P = 0.037). State anxiety tended to have a greater effect in the experimental group than in the control group (P = 0.078). Depressive mood and sleep also improved in each group, with no significant difference between the two groups. There were no significant differences in stress-related physiological parameters, such as stress hormones or qEEG, between the two groups. Subjective device satisfaction was significantly higher in the experimental group than in the control group (P = 0.008). CONCLUSION: Neurofeedback-assisted meditation using a wearable device can help improve subjective stress reduction compared with non-assisted meditation. These results support neurofeedback as an effective adjunct to meditation for relieving stress. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0007413.


Assuntos
Meditação , Neurorretroalimentação , Testes Psicológicos , Autorrelato , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Método Duplo-Cego , Meditação/métodos , Meditação/psicologia , Estresse Psicológico/terapia , Estresse Psicológico/psicologia , Masculino
19.
J Integr Neurosci ; 23(7): 125, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39082285

RESUMO

This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI. Our main methodologies include meta-analysis, search queries employing relevant keywords, and a network-based approach. We are dedicated to delivering an unbiased evaluation of BCI studies, elucidating the primary vectors of research development in this field. Our review encompasses a diverse range of applications, incorporating the use of brain-computer interfaces for rehabilitation and the treatment of various diagnoses, including those related to affective spectrum disorders. By encompassing a wide variety of use cases, we aim to offer a more comprehensive perspective on the utilization of neurofeedback treatments across different contexts. The structured and organized presentation of information, complemented by accompanying visualizations and diagrams, renders this review a valuable resource for scientists and researchers engaged in the domains of biofeedback and brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Transtornos Mentais , Doenças do Sistema Nervoso , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Transtornos Mentais/reabilitação , Doenças do Sistema Nervoso/reabilitação , Reabilitação Neurológica/métodos
20.
J Integr Neurosci ; 23(6): 121, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940096

RESUMO

BACKGROUND: Neurofeedback is a non-invasive brain training technique used to enhance and treat hyperactivity disorder by altering the patterns of brain activity. Nonetheless, the extent of enhancement by neurofeedback varies among individuals/patients and many of them are irresponsive to this treatment technique. Therefore, several studies have been conducted to predict the effectiveness of neurofeedback training including the theta/beta protocol with a specific emphasize on slow cortical potential (SCP) before initiating treatment, as well as examining SCP criteria according to age and sex criteria in diverse populations. While some of these studies failed to make accurate predictions, others have demonstrated low success rates. This study explores functional connections within various brain lobes across different frequency bands of electroencephalogram (EEG) signals and the value of phase locking is used to predict the potential effectiveness of neurofeedback treatment before its initiation. METHODS: This study utilized EEG data from the Mendelian database. In this database, EEG signals were recorded during neurofeedback sessions involving 60 hyperactive students aged 7-14 years, irrespective of sex. These students were categorized into treatable and non-treatable. The proposed method includes a five-step algorithm. Initially, the data underwent preprocessing to reduce noise using a multi-stage filtering process. The second step involved extracting alpha and beta frequency bands from the preprocessed EEG signals, with a particular emphasis on the EEG recorded from sessions 10 to 20 of neurofeedback therapy. In the third step, the method assessed the disparity in brain signals between the two groups by evaluating functional relationships in different brain lobes using the phase lock value, a crucial data characteristic. The fourth step focused on reducing the feature space and identifying the most effective and optimal electrodes for neurofeedback treatment. Two methods, the probability index (p-value) via a t-test and the genetic algorithm, were employed. These methods showed that the optimal electrodes were in the frontal lobe and central cerebral cortex, notably channels C3, FZ, F4, CZ, C4, and F3, as they exhibited significant differences between the two groups. Finally, in the fifth step, machine learning classifiers were applied, and the results were combined to generate treatable and non-treatable labels for each dataset. RESULTS: Among the classifiers, the support vector machine and the boosting method demonstrated the highest accuracy when combined. Consequently, the proposed algorithm successfully predicted the treatability of individuals with hyperactivity in a short time and with limited data, achieving an accuracy of 90.6% in the neurofeedback method. Additionally, it effectively identified key electrodes in neurofeedback treatment, reducing their number from 32 to 6. CONCLUSIONS: This study introduces an algorithm with a 90.6% accuracy for predicting neurofeedback treatment outcomes in hyperactivity disorder, significantly enhancing treatment efficiency by identifying optimal electrodes and reducing their number from 32 to 6. The proposed method enables the prediction of patient responsiveness to neurofeedback therapy without the need for numerous sessions, thus conserving time and financial resources.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Eletroencefalografia , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Adolescente , Masculino , Feminino , Criança , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Ondas Encefálicas/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA